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Abstract

I test for stock return predictability in the largest and most comprehensive data set analyzed

so far, using four common forecasting variables: the dividend- and earnings-price ratios, the

short interest rate, and the term spread. The data contain over 20,000 monthly observations

from 40 international markets, including 24 developed and 16 emerging economies. In addition, I

develop new methods for predictive regressions with panel data. Inference based on the standard

�xed e¤ects estimator is shown to su¤er from severe size distortions in the typical stock return

regression, and an alternative robust estimator is proposed. The empirical results indicate that

the short interest rate and the term spread are fairly robust predictors of stock returns in

developed markets. In contrast, no strong or consistent evidence of predictability is found when

considering the earnings- and dividend-price ratios as predictors.
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I Introduction

Our empirical knowledge regarding the predictability of stock returns by variables such as the

dividend-price ratio has been subject to constant updating over time. Early work by Fama and

French (1988, 1989) and Campbell and Shiller (1988) concluded that there is generally strong

evidence of predictability. Recent studies that use more robust econometric methods, such as

Campbell and Yogo (2006) and Lewellen (2004), still �nd evidence of predictability, but their results

are much less conclusive than the earlier studies.

Despite the mixed evidence and uncertainty regarding stock return predictability, there have

been surprisingly few attempts at furthering our understanding by using data other than that

of the U.S. stock-market. Since the predictable component of stock returns must be small, if

indeed one does exist, there seems to be little chance of reaching a decisive conclusion using U.S.

data alone, which e¤ectively provides only one time-series at the market level. There has, of

course, been some analysis of predictability in international stock returns, but many of the results

are based on relatively small data sets and non-robust econometric methods.1 In addition, most

international results are based only on individual time-series regressions and very little analysis has

been conducted with pooled panel data regressions. Yet, it is well known that pooling the data

may lead to more powerful methods, which is particularly relevant when studying stock return

predictability since any predictable component will always be small relative to the overall variance

in the returns process.

The aim of this paper is twofold. First, by considering a large global data set, I provide the most

comprehensive picture of stock return predictability to date. The data contain over 20,000 monthly

observations from 40 countries, including markets in 24 developed economies.2 The longest data

series is for the U.K. stock-market and dates back to 1836 while data for eight other markets date

back to before 1935. Second, I develop and apply new results for pooled forecasting regressions,

utilizing the panel structure of the data.

Since an international data set of stock returns and forecasting variables provides a panel, the

1See, for instance, Harvey (1991, 1995), Ferson and Harvey (1993), Campbell (2003), Polk et al. (2004), Paye and
Timmermann (2006), and Ang and Bekaert (2007).

2 Included in the sample are the stock-markets in Hong Kong and Taiwan. Since Hong Kong is part of China and
Taiwan is not a formally recognized sovereign state, the use of the term country for these markets is not entirely
correct, but is used for convenience throughout the paper.
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theory part of this paper analyzes econometric inference in predictive regressions in a panel data

setting, when the regressors are nearly persistent and endogenous.3 As is well known (Stambaugh

(1999)), OLS inference in the corresponding time-series predictive regressions is generally biased

and various bias and size correction procedures have been proposed.

In the panel case, it turns out that the pooled estimator is unbiased as long as no �xed e¤ects

are included. The intuition behind this is that when pooling the data, independent cross-sectional

information dilutes the endogeneity e¤ects that cause the Stambaugh bias in the time-series case.

That is, the Stambaugh bias only arises when the predictors are both persistent and endogenous;

by pooling the data, the endogeneity is, in a sense, removed, and hence also the bias. Furthermore,

the standard pooled estimator has an asymptotically normal distribution and normal inference can

therefore be performed.

The intuition just described for the standard pooled estimator no longer holds when �xed e¤ects

are allowed for, and the asymptotic properties of the pooled estimator with �xed e¤ects are very

di¤erent from those of the pooled estimator with a common intercept. The time-series demeaning

of the data, which is implicit in a �xed e¤ects estimation, causes the �xed e¤ects estimator to su¤er

from a second order bias that invalidates inference from standard test statistics. When demeaning

each time-series in the panel, information after time t is used to form the time t regressor, and

information before time t is used to form the time t returns. This induces a correlation between the

lagged value of the demeaned regressor and the error term in the forecasting equation, which gives

rise to the second order bias in the �xed e¤ects estimator. Thus, in contrast to the case with a

common intercept, the regressors no longer act as if they were exogenous. To correct for this bias, I

develop an estimator based on the idea of recursive demeaning (e.g. Moon and Phillips (2000), and

Sul et al. (2005)). By using information only after time t in the demeaning of the returns and the

non-demeaned regressor as an instrument, the distortive e¤ects arising from standard demeaning

are eliminated.

The overall conclusion from the theoretical results and the supporting Monte Carlo simulations

is that, in the typical panel data case with �xed e¤ects, persistent and endogenous regressors will

3A predictive regressor is generally referred to as endogenous if the innovations to the returns are contemporaneously
correlated with the innovations to the regressor. When the regressor is strictly stationary, such endogeneity has no
impact on the properties of the estimator, but when the regressor is persistent in some manner, the properties of the
estimator will be a¤ected; see, for instance, Mankiw and Shapiro (1986), Cavanagh et al. (1995), Stambaugh (1999),
Amihud and Hurvich (2004), Lewellen (2004), Campbell and Yogo (2006), and Jansson and Moreira (2006).
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cause standard inference to be biased. While this result is well established in the time-series case

(e.g. Stambaugh (1999)), the results in this paper show that equal caution is required when working

with panel data.

In the empirical analysis, I conduct time-series regressions for individual countries as well as

pooled regressions. In both types of analyses, I estimate regressions for four of the most commonly

used forecasting variables: the dividend- and earnings-price ratios, the short interest rate, and the

term spread. In the pooled regressions, countries are either all grouped together in a global panel

or split up into groups of developed and emerging markets.

The results indicate that the short interest rate and the term spread are both fairly robust

predictors of (excess) stock returns in developed markets. The null of no predictability is clearly

rejected in the pooled regressions for developed markets as well as in a number of individual time-

series regressions. These results are generally in line with those found by Campbell and Yogo (2006)

with U.S. data and with the limited international results of Ang and Bekaert (2007). In contrast to

the interest rate variables, no strong or consistent evidence of predictability is found when consid-

ering the earnings- and dividend-price ratios as predictors. In particular, neither predictor yields

any consistent predictive power for the developed markets and, as seen in plots of the regression

coe¢ cient over time, this is especially true for the dividend-price ratio.

The rest of the paper is organized as follows. Sections II and III describe the empirical model

and derive the main asymptotic properties of the pooled estimators. The �nite sample properties of

the procedures developed in this paper are analyzed through Monte Carlo experiments in Section

IV. The data are described in Section V and the empirical results, including out-of-sample exercises,

are provided in Section VI. Section VII concludes and technical assumptions and proofs are found

in the Appendix.

II Pooled Estimation in Predictive Regressions

A Model and Assumptions

Consider a panel model with dependent variables yi;t, i = 1; :::; n, t = 1; :::; T , and the corresponding

vector of regressors, xi;t, where xi;t is an m � 1 vector. In this paper, yi;t is the stock return in

country i, and xi;t are the corresponding predictor variables. The behavior of yi;t and xi;t are
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modelled as follows:

yi;t = �i + �
0
ixi;t�1 + 

0
ift + ui;t;(1)

xi;t = x0i;t + �
0
izt;(2)

x0i;t = Aix
0
i;t�1 + vi;t;(3)

zt = Agzt�1 + gt:(4)

That is, stock returns yi;t are a function of the past values of the predictor variables plus two

factors representing country speci�c (ui;t) and global (ft) innovations. In the typical time-series

predictive regression using, for instance, aggregate U.S. data, these two error terms are generally

not distinguishable, and in terms of econometric inference, it makes no di¤erence whether the shocks

are U.S. speci�c or global in some sense. However, when pooling data from several countries, it

becomes important to control for whether innovations to returns are due to country speci�c shocks

or shocks that are common to all countries in the sample. Intuitively, if one ignores the presence of

common factors in the error terms, the total amount of (independent) variation in the pooled data

is overstated, and the econometric inference will be biased.

The vector of predictor variables, xi;t, is also assumed to be the sum of country speci�c
�
x0i;t

�
and global (zt) terms. Both x0i;t and zt follow AR (1) processes. More precisely, the auto-regressive

roots of both of these processes are parameterized as being local-to-unity, such that Ai = I +Ci=T

and Ag = I + Cg=T , where both Ai and Ag are m � m matrices. This captures the near unit-

root, or highly persistent, behavior of many predictor variables, but is less restrictive than a pure

unit-root assumption. The near unit-root construction, where the autoregressive root drifts closer

to unity as the sample size increases, is used as a tool to enable an asymptotic analysis where

the persistence in the data remains large relative to the sample size, even when the sample size

increases to in�nity. That is, if the auto-regressive roots are treated as �xed and strictly less than

unity, then as the sample size grows, the regressors will behave as strictly stationary processes

asymptotically, and the standard �rst order asymptotic results will not provide a good guide to the

actual small sample properties of the model. If the roots are exactly equal to unity, the usual unit-

root asymptotics apply to the model, but this is clearly a restrictive assumption for most potential

predictor variables. Instead, by using the near unit-root construction, the e¤ects from the high

4



persistence in the regressor will appear also in the asymptotic results, but without imposing the

strict assumption of a unit root.

Finally, the regressors xi;t can be endogenous in the sense that ui;t and vi;t are contemporaneously

correlated; ft and gt may be contemporaneously correlated as well, and can, in fact, be identical.

The model speci�cation is completed in Appendix A with some additional formal assumptions.

Unless otherwise noted, all variables appearing in the asymptotic distributions derived below are

de�ned in Appendix A.

B Motivations for Pooling

1 Practical and Econometric Considerations

The theoretical part of this paper analyzes the pooled estimation of the slope coe¢ cient in equation

(1). That is, by pooling data from several countries, an estimate of a joint slope coe¢ cient � is

obtained. If the individual slope coe¢ cients are all identical, such that �i = � for all i = 1; :::; n, the

pooled estimator will converge to this common parameter. In addition, the pooled estimator can

either impose a common intercept �, or allow for individual intercepts, or �xed e¤ects, �i. When

the restrictions �i = �, and potentially �i = �, hold for all i, pooling the data should lead to more

precise estimates than time-series estimation of each individual �i.

When the slope coe¢ cients �i are not all identical, pooled estimation may still be useful. In

this case, the pooled estimator will converge to a well-de�ned average slope coe¢ cient. The pooled

estimate, and related tests, thus makes a statement about the average predictive relationship in

the panel, which provides a useful tool for interpreting and understanding the empirical results,

especially if the individual time-series regressions deliver mixed results. Furthermore, and as im-

portantly, the pooled estimate may in some respects provide at least as good an estimate of �i for a

given i, by providing a possibly less noisy estimate than the time-series one. That is, if the �is are

not identical, the pooled estimator will generally not provide an unbiased estimate for a given �i, but

in a bias-variance trade-o¤ it may still dominate the time-series estimate of �i. This bias-variance

trade-o¤ is illustrated by out-of-sample forecasts at the end of this paper where it is shown that the

forecasts based on the pooled estimator often dominate those based on the time-series estimates.
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2 Economic Rationale

Is it likely, from the perspective of economic theory, that the �is and �is are identical across i?

That is, can one justify pooling the data from an economic perspective, and if so, should �xed

e¤ects be included?

Consider �rst the question of �xed e¤ects. Under the null of no predictability, such that �i =

0 for all i, the restriction of �i = � for all i imposes the same expected excess return in all

countries. Although it is very di¢ cult to obtain precise estimates of average returns, detailed

empirical studies such as Jorion and Goetzman (1999) strongly suggest that the equity premium

varies across countries. In addition, if an international world CAPM applies, identical �is in the

absence of predictability imply that the world CAPM beta for each country is identical. The

restriction of identical CAPM betas is strongly rejected in previous studies such as Ferson and

Harvey (1994), who report international CAPM betas in the range from 0:4 to 1:3, and Harvey

(1995), who shows that the world CAPM betas for some emerging markets are negative. Although

the world CAPM does not o¤er a complete model of stock returns, it does capture a sizeable amount

of the variation in international stock returns (Ferson and Harvey, 1994). Model predictions that

strongly contradict it, such as identical CAPM betas for all countries, should thus be seen as a

warning sign of misspeci�cation. Therefore, given the importance of having a model that is correctly

speci�ed under the null hypothesis, �xed e¤ects should generally be included.4

In order to understand the economic constraints that are imposed by identical �is, one needs to

analyze a model that implies predictability in stock returns. Menzly et al. (2004) explicitly analyze

cross-sectional di¤erences in time-series return predictability. They use an external habit model

similar to Campbell and Cochrane (1999) and show that the dividend-price ratio predicts excess

stock returns. The slope coe¢ cient in this predictive regression varies across assets as a function

of the properties of the assets�cash-�ow share of overall income; in an international asset pricing

framework, with integrated markets, each country portfolio can be viewed as an individual asset,

as in the international CAPM. The model in Menzly et al. (2004) thus implies that, in general,

4By imposing a common intercept �, it is also implicitly assumed that the mean of xi;t is the same for all i. In
the international data used in this paper, this is often a very restrictive assumption. For instance, the nominal short
interest rate will on average be much higher in countries that have experienced high in�ation over the sample period,
but it is typically too strong an assumption to assume that the stock returns in these countries therefore have been
below their long-run average for most of the sample period, as a predictive regression with a common intercept and
negative slope coe¢ cient would imply.
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the slope coe¢ cients �i in the predictive regression in equation (1) may not be identical across i.

However, the model says little about how disperse the slope coe¢ cients actually are in practice.

That is, even though it is unlikely that the �is are identical across countries or assets, as is true

for most parameters that may be estimated in economics or �nance, what is of primary importance

for the empirical scope of this paper is whether they are similar enough that it may be bene�cial

from an econometric point of view to treat them as equal.5 From this empirical perspective, the

implications of the Menzly et al. (2004) model are essentially silent, and it is unlikely that other

models of return predictability would deliver any stronger practical implications.

The results in the current paper suggest that pooling the data, and thus imposing a common

slope coe¢ cient, is in fact quite often empirically justi�ed in the sense that the null hypothesis of

a common slope coe¢ cient can often not be rejected in formal statistical tests and the forecasts

based on the pooled estimates often tend to outperform those based on the individual time-series

estimates in out-of-sample exercises. Thus, even though economic theory does not generally predict

that the �is are all identical, it cannot be a priori rejected that they are similar enough for there

to be bene�ts from pooling the data, which ties back to the discussion on the practical motivations

in the section above.

In general, it is quite reasonable to conjecture that countries that share many common charac-

teristics are more likely to have similar predictability patterns than those that do not. One of the

most natural splits along these lines in international data is to distinguish between developed and

emerging markets. Previous literature, such as Harvey (1995), also shows that emerging markets

tend to have di¤erent return characteristics than developed markets, and di¤erent patterns of pre-

dictability. To the extent that stock markets in di¤erent countries are more likely to have similar

predictability if they are priced globally in integrated �nancial markets, rather than locally in seg-

regated markets, the group of developed markets is also likely to better satisfy this requirement.

The empirical analysis separately analyzes developed and emerging market panels, and includes a

test of slope homogeneity that shows that these two groups of countries appear more homogenous

than all countries combined.
5One could make a similar argument for the treatment of �xed e¤ects, although the observed di¤erences in equity

premia across countries immediately makes the argument rather weak. Importantly, however, omitting �xed e¤ects
in the analysis will lead to estimates and test statistics that are only consistent when the assumption of a common
intercept holds. In contrast, the pooled estimator is robust to heterogeneity in the �is as mentioned in the previous
section, and tests on the slope coe¢ cient will provide valid inference on the (average) predictability in the panel.
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C Pooled Estimation

To understand the basic properties of pooled estimators of a common slope coe¢ cient � in equation

(1), it is instructive to start with analyzing the case when there are no common factors in the

data. That is, let i � 0 and �i � 0, for all i. This assumption will be maintained throughout

the remainder of Section II and the e¤ects of common factors are analyzed in Section III. Unless

otherwise noted, it is assumed that the slope coe¢ cients �i are identical and equal to � for all i.

1 The Standard Pooled Estimator without Fixed E¤ects

To estimate the parameter �, consider �rst the traditional pooled estimator when there are no

individual e¤ects, i.e. when �i � � for all i. Although the previous discussion strongly suggested

the use of individual intercepts in the international analysis performed in the current paper, there

may be other cases when a common intercept can be justi�ed. In addition, a comparison of the

pooled estimator with and without �xed e¤ects highlights some important di¤erences and helps

form an understanding of the e¤ects of pooling the data. The pooled estimator with a common

intercept is given by

(5) �̂Pool =

 
nX
i=1

TX
t=1

~xi;t�1~x
0
i;t�1

!�1 nX
i=1

TX
t=1

~yi;t~xi;t�1

!
;

where

(6) ~yi;t = yi;t �
1

nT

nX
i=1

TX
t=1

yi;t; and ~xi;t = xi;t �
1

nT

nX
i=1

TX
t=1

xi;t:

Following the work of Phillips and Moon (1999), asymptotic results for the panel estimators are

derived using sequential limits, which implies �rst keeping the cross-sectional dimension, n, �xed and

letting the time-series dimension, T , go to in�nity, and then letting n go to in�nity. Such sequential

convergence is denoted (T; n!1)seq.6 As mentioned before, the de�nitions of the variables that

appear in the theorems and derivations below are all found in Appendix A, unless otherwise noted.

6Subject to potential rate restrictions, such as n=T ! 0, these results can generally be shown to hold as n and T
go to in�nity jointly; technical proofs of such joint convergence is not pursued in the current study, however.
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Theorem 1 With i � 0, �i � 0, �i � �, and �i � � for all i, as (T; n!1)seq ;

(7)
p
nT
�
�̂Pool � �

�
) N

�
0;
�1xx�ux


�1
xx

�
:

The pooled estimator of � is thus asymptotically normally distributed; summing up over the

cross-section eliminates the usual near unit-root asymptotic distributions found in the time-series

case. The rate of convergence is also faster in the pooled case (
p
nT ) compared to the time-series

case (T ), which again is a result of the additional cross-sectional information. The limiting distri-

bution depends on 
xx and �ux and, in order to perform inference, estimates of these parameters

are required. Let ûi;t = ~yi;t � �̂Pool~xi;t�1, �̂ux = 1
n

Pn
i=1

1
T 2
PT
t=1

PT
s=1 (ûi;t~xi;t�1) (ûi;s~xi;s�1)

0,

and 
̂xx = 1
n

Pn
i=1

1
T 2
PT
t=1 ~xi;t�1~x

0
i;t�1. The estimator �̂ux is thus the panel equivalent of HAC

(heteroskedasticty and auto-correlation consistent) estimators for long-run variances.

Standard tests can now be performed. For instance, the null hypothesis �(k) = �0(k), for some

k = 1; :::;m, where � =
�
�(1); :::; �(m)

�0
, can be tested using a t�test. Let �̂ = 
̂�1xx �̂ux
̂�1xx . Using

the results derived above, it follows easily that under the null-hypothesis,

(8) tk =
�̂(k);Pool � �0(k)r
a0�̂a

.
(nT 2)

) N (0; 1) ;

as (T; n!1)seq, where a is an m � 1 vector with the k�th component equal to one and zero

elsewhere, and �̂(k);Pool is the k�th component of �̂Pool. More general linear hypotheses can be

evaluated using a Wald test.

2 Fixed E¤ects

Let y
i;t
and xi;t denote the time-series demeaned data. That is, xi;t = xi;t � 1

T

PT
t=1 xi;t�1 and

y
i;t
= yi;t � 1

T

PT
t=1 yi;t. The �xed e¤ects pooled estimator, which allows for individual intercepts,

is then given by

(9) �̂FE =

 
nX
i=1

TX
t=1

xi;t�1x
0
i;t�1

!�1 nX
i=1

TX
t=1

y
i;t
xi;t�1

!
;
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and

(10) �̂FE � � =
 
1

n

nX
i=1

1

T 2

TX
t=1

xi;t�1x
0
i;t�1

!�1 
1

n

nX
i=1

1

T 2

TX
t=1

ui;txi;t�1

!
:

Clearly, the estimator is still consistent. Its asymptotic distribution, however, will be a¤ected by

the demeaning. For �xed n, as T !1,

(11) T
�
�̂FE � �

�
)
 
1

n

nX
i=1

Z 1

0
J iJ

0
i

!�1 
1

n

nX
i=1

Z 1

0
dB1;iJ i

!
;

where J i and dB1;i are the limiting processes of xi;t and ui;t, respectively, as de�ned in Appendix

A; the limiting process for vi;t is denoted dB2;i. Let !21 = limn!1 n�1
P
!21i denote the average

covariance vector between ui;t and vi;t, and observe that

E

�Z 1

0
dB1;iJ i

�
= E

�Z 1

0
dB1;i (r) Ji (r)�

Z 1

0
dB1;i (s)

Z 1

0
Ji (r) dr

�
= �

Z 1

0

Z 1

0

Z r

0
E
h
e(r�s)Ci

i
E [dB1;i (s) dB2;i (q)] dsdr

= �
�Z 1

0

Z r

0
E
h
e(r�s)Ci

i
dsdr

�
!21;(12)

which is di¤erent from zero whenever !21 6= 0. Thus, as (T; n!1)seq,

(13) T
�
�̂FE � �

�
!p �
�1xx

�Z 1

0

Z r

0
E
h
e(r�s)Ci

i
dsdr

�
!21;

and the estimator su¤ers from a second order bias from the demeaning process.7

The di¤erences in sample properties between the standard pooled estimator with a common

intercept and the �xed e¤ects estimator are rather striking. Mechanically, the standard pooled

estimator works well because for each i, the terms in the numerator of the estimator have mean

zero and are independently distributed across i. As they are summed up over n, the central limit

theorem applies and an asymptotically normally distributed estimator is obtained. More intuitively,

when pooling the data, independent cross-sectional information dilutes the endogeneity e¤ects that

cause the Stambaugh (1999) bias in the time-series case. The same result does not hold for the �xed

7 In the special case of !12 = 0, it follows easily that �̂FE is also asymptotically normally distributed with conver-
gence rate

p
nT , and inference can proceed in a manner analogous to the pooled case with a common intercept.
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e¤ects estimator because the numerator terms no longer have a zero mean as a consequence of the

time-series demeaning of the data, which leads to a correlation between the innovation processes ui;t

and the demeaned regressors xi;t�1 whenever the regressor is endogenous. Thus, unlike in the case

with a common intercept, the pooling does not remove the endogeneity e¤ects and the estimator

su¤ers from a second order bias.

More generally, from the perspective of panel data econometrics, the natural way of understand-

ing the detrimental impact of �xed e¤ects is to view them as an instance of the incidental parameter

problem, which was originally raised by Neyman and Scott (1948) and discussed in a panel data con-

text by Nickell (1981). That is, as the panel grows larger asymptotically, the number of (incidental)

�xed e¤ects that need to be estimated also goes to in�nity, as the cross-sectional dimension grows.

Thus, although more and more data becomes available asymptotically, the number of parameters to

estimate also increases. In the traditional (dynamic) panel setup studied by Nickell (1981), where T

is �xed as n!1, inclusion of �xed e¤ects causes the standard estimator of the slope coe¢ cient to

become inconsistent. Here, where both n and T tend to in�nity, the �xed e¤ects estimator remains

consistent but with a second order bias.

D Recursive Demeaning

The second order bias in the �xed e¤ects estimator arises because the demeaning process induces

a correlation between the innovation processes ui;t and the demeaned regressors xi;t�1. Intuitively,

ui;t and xi;t�1 are correlated because, in the demeaning of xi;t�1, information available after time

t�1 is used. Or, equivalently, because in the demeaning of the dependent variable, yi;t, information

before time t is used. One solution is therefore to use recursive demeaning of xi;t and yi;t (e.g. Moon

and Phillips, (2000), and Sul et al. (2005)). In particular, I will consider a �forward demeaned�

equation. That is, de�ne

(14) ydd
i;t
= yi;t �

1

T � t+ 1

TX
s=t

yi;s; and xddi;t = xi;t �
1

T � t+ 1

TX
s=t

xi;s:

Observe that

ydd
i;t
= yi;t�

1

T � t+ 1

TX
s=t

yi;s = �
0

 
xi;t�1 �

1

T � t+ 1

TX
s=t

xi;s�1

!
+ui;t�

1

T � t+ 1

TX
s=t

ui;s = �
0xddi;t�1+u

dd
i;t ;
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and consider the following pooled estimator, using the recursively demeaned data,

(15) �̂RD =

 
nX
i=1

TX
t=1

xddi;t�1x
0
i;t�1

!�1 nX
i=1

TX
t=1

ydd
i;t
xi;t�1

!
:

In �̂RD, the non-demeaned regressors xi;t�1 are used as instruments, and the dependent variable,

ydd
i;t
, is formed using data dated only after time t. Since uddi;t and xi;t�1 are now independent of each

other, unlike ui;t and xi;t�1, the estimator �̂RD will not su¤er from the same second order bias as

the standard �xed e¤ects estimator. This is stated formally in the following theorem.

Theorem 2 With i � 0, �i � 0, and �i � � for all i, as (T; n!1)seq ;

(16)
p
nT
�
�̂RD � �

�
) N

�
0;
�

RDxx

��1
�RDux

�

RDxx

��1�
;

where �RDux and 
RDxx are de�ned in the proof of the theorem.

To perform inference, let ûddi;t = y
dd
i;t
��̂RDxddi;t�1, �̂

RD
ux = 1

n

Pn
i=1

1
T 2
PT
t=1

PT
s=1

�
ûddi;txi;t�1

��
ûddi;sxi;s�1

�0
,

and 
̂
RD
xx = 1

n

Pn
i=1

1
T 2
PT
t=1 x

dd
i;t�1x

0
i;t�1. The t�test and Wald test based on �̂

RD
ux and 
̂

RD
xx will sat-

isfy the usual properties. Observe that the forward demeaning of the data introduces a moving

average component in the returns process, which is re�ected in the limiting distribution derived in

the proof of Theorem 2. The variance-covariance matrix estimator that was just proposed automat-

ically accounts for this by calculating the long-run variance using the forward demeaned residuals

and the panel equivalent of a HAC estimator.

The recursive demeaning procedure gives up some e¢ ciency by relying on a somewhat ine¢ cient

method for demeaning the data. However, there are no clear-cut alternatives in the general case

when the autoregressive roots Ci (or equivalently, Ai) are unknown. If the Cis were known, the

bias term in equation (13) could be directly estimated and a bias-corrected �xed e¤ects estimator

could be constructed. More ambitiously, for known Cis, a panel version of fully modi�ed estimation

could be considered, as suggested by Phillips and Moon (1999) in the pure unit-root case. However,

although such procedures are likely more e¢ cient than the recursive demeaning proposed here, they

are not feasible in practice since the Cis are unknown.8

8The test of slope homogeneity developed below does rely on knowledge of the Cis, and an approximate solution
is proposed. However, such an approach, which is not proven to be asymptotically correct, seems more justi�ed in a
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E Relaxing the Pooling Assumption

1 Properties of the Pooled Estimators when the �is Are Not Identical

So far, the focus has been on the problems raised by �xed e¤ects. However, it is also possible that

the slope coe¢ cients �i may vary across i. In this section, I therefore discuss the properties of the

pooled estimator when the �is are not identical.
9 To start with, suppose �i = �+ �i, where f�igni=1

is iid with mean zero.

Theorem 3 Let i � 0, �i � 0, and �i = � + �i for all i.

(a) If �i is orthogonal to xi;t for all i and t, as (T; n!1)seq ;

(17)
p
n
�
�̂FE � �

�
) N

�
0;
�1xx�

�
xx


�1
xx

�
;

where ��xx is de�ned in the proof of the theorem.

(b) If �i is not orthogonal to xi;t, as (T; n!1)seq ;

(18) �̂FE !p � +

�1
xxE

��Z 1

0
J iJ

0
i

�
�i

�
:

Analogous results also hold in the case without �xed e¤ects.

In the case where the distribution of the slope coe¢ cients is independent of the regressors, it

follows that the pooled estimator converges to the average parameter � � E [�i]. The rate of

convergence is much slower than in the homogenous case, however, and the �xed e¤ects estimator

no longer su¤ers from a small sample bias. These results stem from the fact that when the �is are

non-identical, the residuals in the regression are now given by �0ixi;t�1 + ui;t. Since xi;t�1 is a near

integrated process, it will dominate the asymptotic properties of the residuals, and will therefore

slow down the rate of convergence and also render the second order bias term in the �xed e¤ects

estimator irrelevant. However, when the deviations �i are small, the second order bias term is still

a concern. Results from Monte Carlo simulations, which are not presented here, show that for most

test of slope homogeneity, which is of a more diagnostic nature and of second order importance, as compared to the
actual test of return predictability.

9Note that this section focuses on estimating a common parameter (�), when the individual �is are not identical.
This is in contrast to the �xed e¤ects �i, which are in fact estimated for each i. However, estimating individual �is
as well would simply reduce the problem to individual time-series regressions.
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potentially relevant values of � and �i in a stock return predictability context, the bias in the �xed

e¤ects estimator is still highly relevant. Likewise, when the deviations �i are small, the slow-down

in the rate of convergence will not be as drastic as in Theorem 3.10

If the �is are correlated with the regressors, the pooled estimator does not converge to the

average slope coe¢ cient �. However, as discussed at length in Phillips and Moon (1999, 2000), the

average of the individual parameters �i is not necessarily the natural way of de�ning an average

relationship between yi;t and xi;t�1. Phillips and Moon note that in a framework with persistent

variables, one can de�ne the individual regression coe¢ cients �i as �i = 
�1xx;i
yx;i, where 
xx;i

is the long-run variance for xi;t and 
yx;i is the long-run covariance between yi;t and xi;t�1. They

then de�ne the long-run average relationship between yi;t and xi;t�1 as �LRA � E [
xx;i]�1E [
yx;i],

rather than E
h

�1xx;i
yx;i

i
= �, and show that the pooled estimator, with or without �xed e¤ects,

will converge to �LRA under very general conditions; in the special case when �i = � + �i and �i is

independent of xi, it follows that �LRA = �. Thus, �̂FE and �̂Pool converge to a well de�ned average

relationship under very general circumstances, although not necessarily to � = limn!1 1
n

Pn
i=1 �i.

2 A Test of Slope Homogeneity

The analysis above shows that the pooled estimators are robust to deviations from the assumption

of homogenous slope coe¢ cients, and will converge to a well-de�ned average coe¢ cient when the

�is are non-identical. In many cases, it is still of interest, however, to evaluate whether the slope

coe¢ cients are in fact all equal.

I adopt a version of a test originally proposed by Swamy (1970) and further developed by Pesaran

(2007). The basic idea is to analyze a weighted sum of squared di¤erences between the unrestricted

time-series estimates of the individual �is and the �xed e¤ects pooled estimate, which imposes a

common slope coe¢ cient.

De�ne the following weighted �xed e¤ects estimator,

(19) �̂WFE =

 
nX
i=1

TX
t=1

xi;t�1x
0
i;t�1

!̂11i

!�1 nX
i=1

TX
t=1

y
i;t
xi;t�1

!̂11i

!
;

10Although the asymptotic distributions for �̂Pool (and �̂FE) di¤er depending on whether the �is are identical
or not, it is easy to show that inference based on standard test statistics will be self-standardizing. Thus, no prior
knowledge on the homogeneity of the �is is required to perform inference on the pooled estimate.
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where !̂11i is an estimate of the variance of ui;t (!11i); the standardization by !11i leads to a natural

reduction in nuisance parameters in the asymptotic distribution of the below test statistic. Further,

let

(20) S� =
nX
i=1

�
�̂i � �̂WFE

�0 TX
t=1

xi;t�1x
0
i;t�1

!̂11i

!�
�̂i � �̂WFE

�
;

where �̂i is the OLS estimate of the slope coe¢ cient for country i.

Theorem 4 With i � 0, �i � 0, and under H0 : �i = � for all i, as (T; n!1)seq,

(21) �� =
p
n

 
1
nS� � �Z
�Z

!
) N (0; 1) :

where �Z and �Z are de�ned in the proof of the theorem.

Given �Z and �Z , �� provides an asymptotically normally distributed test of slope homogeneity.

Unfortunately, �Z and �Z are functions of the unknown nuisance parameters fCigni=1; they are also

functions of the average correlation (�) between the innovations ui;t and vi;t, but this value can

easily be estimated.

Through simulations, it easy to show that �Z changes fairly slowly with the values of the Cis,

whereas �Z can vary substantially from small changes in the Cis. In order to obtain a feasible test

with approximately correct size, I therefore propose to use �Z , evaluated for a common value of

Ci = ~C for all i, where ~C is given by the average of the median unbiased estimates of each Ci. As

originally shown by Stock (1991), median unbiased, although inconsistent, estimates of each Ci can

be obtained by inverting a unit-root test statistic. Further, �Z is replaced by an empirical estimate

that is consistent under the null hypothesis of �i = � for all i. Write S� �
Pn
i=1 Zi;n;T where Zi;n;T

represents the expression in (20). From the proof of Theorem 4, an estimate of �Z is obtained by

calculating the sample standard deviation of Zi;n;T . Under the alternative, when the �is are not

all identical, this estimate will be upward biased for �Z , and some power will therefore be lost.

However, given a lack of knowledge of the Cis, and the strong dependence of �Z on the values of

the Cis, this seems like a preferable approach.

In terms of practical implementation, the median unbiased estimates for Ci are obtained by

inverting the DF-GLS unit-root test statistic, as described in detail in Campbell and Yogo (2006).
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In the case when xi;t is a vector, the same procedure can be applied to each of the component

processes of xi;t and, with the extra restriction that Ci is a diagonal matrix, one can proceed

exactly as in the scalar case. The variances (!11i) of ui;t and the average correlation (�) between

ui;t and vi;t are estimated from the residuals of the time-series regressions of equations (1) and (2).

The values for �Z are obtained by direct simulation of the asymptotic expression given in the proof

of Theorem 4; these values are available from the author upon request. The null hypothesis is

rejected for large positive values of ��; e.g. a �ve percent test would reject for values larger than

1:65.

III Cross-Sectional Dependence

A The E¤ects of Common Factors

I now return to the general setup with common factors in the data. The following theorem summa-

rizes the asymptotic properties of both the standard pooled estimator and the �xed e¤ects estimator

when there are common factors. Again, the �is are assumed to be identical unless otherwise noted.

Theorem 5 (a) With �i � � and �i � � for all i, as (T; n!1)seq ;

(22) T
�
�̂Pool � �

�
) (
xx +
zz)

�1
�Z 1

0

�
0dBf

� �
�0Jg

��
:

(b) With �i � � for all i, as (T; n!1)seq ;

(23) T
�
�̂FE � �

�
) (
xx +
zz)

�1
�Z 1

0

�
0dBf

� �
�0Jg

�
�
�Z 1

0

Z r

0
E
h
e(r�s)Ci

i
dsdr

�
!21

�
:

Thus, in the presence of the general factor structure outlined in Section II, the standard pooled

estimator exhibits a non-standard limiting distribution, although it is still consistent; standard tests

can therefore not be used. Similarly, the limiting behavior of the �xed e¤ects estimator is determined

by the bias term arising from the time-series demeaning of the data, as well as an additional term

that stems from the common factors in the data. Note that the term
R 1
0 (

0dBf ) (�
0Jg) is random

and can take on both negative and positive values. Thus, correcting for it will have an ambiguous

e¤ect on the outcome of the estimation and test results.
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B Robust Estimators

Based on the methods of Pesaran (2006), I propose an estimator that is more robust to cross-

sectional dependence in the data. Pesaran�s (2006) idea is to project the data onto the space

orthogonal to the common factors, thereby removing the cross-sectional dependence from the data

used in the estimation. However, since the factors are not observed in practice, an indirect approach

is required. Pesaran suggests using the cross-sectional means of the dependent and independent

variable as proxies for the common factors. A similar approach is adopted below, but only the

cross-sectional means of the regressors are used to control for the common factors. This is done

because of the di¤erent orders of integration between the error terms and the regressors. For � 6= 0,

the stochastic behavior of yi;t is dominated by that of xi;t�1, and the matrix T�1=2 (�y�;t; �x�;t�1)
0

would be asymptotically singular.

Thus, consider the following estimator of �,

(24) �̂
+

Pool =

 
nX
i=1

X0i;�1M�HXi;�1

!�1 nX
i=1

X0i;�1M�HYi

!

where Yi denotes the T �1 matrix of the observations for the dependent variable and Xi the T �m

matrix of regressor observations. M�H = I� �H
�
�H0 �H

��1 �H0 is a T � T matrix and �H is the T �m

matrix of observations of �Ht = 1
n

Pn
i=1 xi;t�1 = �x�;t�1:

The estimator �̂
+

Pool is obtained by applying the pooled estimator to the residuals from a pro-

jection of the original data onto the cross-sectional averages of the regressors. The intuition behind

this is that the cross-sectional average of xi;t is close to the common stochastic trend zt, since the

cross-sectional averages of the cross-sectionally independent data may be expected to be close to

zero; the projection onto the compliment of the cross-sectional means will therefore remove the ef-

fects of the common factors in the regressors. As is shown in the proof of the following theorem, it is

su¢ cient to remove the factors from the regressors (and not from the innovations to the regressand)

in order to achieve a mixed normal distribution.

Theorem 6 With �i � � and �i � � for all i, as (T; n!1)seq,

(25)
p
nT
�
�̂
+

Pool � �
�
)MN

�
0;
�1xx (�ux +�fx) 


�1
xx

�
:
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where MN (�) denotes a mixed normal distribution.

The estimator �̂
+

Pool thus achieves a
p
nT�convergence rate and an asymptotic mixed normal

distribution. The mixed normality in this case arises from the common factors, which leads to

a mixed normal distribution rather than the normal distribution seen above in the no common

factors case. That is, the limiting distribution is e¤ectively a normal distribution with a random

variance-covariance matrix that is a function of the common shocks; conditional on the realization

of the common factors, the distribution is thus normal. For practical purposes, the mixed normal

distribution allows for standard inference in that the t�tests and Wald tests will have asymptotically

standard distributions. Allowing for �xed e¤ects in the arguments, it is easy to show the following

result.

Corollary 1 Let bXi;�1 =M�HXi;�1 and bYi =M�HYi and de�ne

(26) �̂
+

FE =

 
nX
i=1

bX0i;�1 bXi;�1
!�1 nX

i=1

bX0i;�1 bYi

!
;

and

(27) �̂
+

RD =

 
nX
i=1

bXdd0i;�1 bXi;�1
!�1 nX

i=1

bX0i;�1 bYdd
i

!

where bXi;�1 and bYi represent the time-series demeaned versions of bXi;�1 and bYi, and bXddi;�1 andbYdd
i are the recursively demeaned variables. Then, with �i � � for all i, as (T; n!1)seq,

(28) T
�
�̂
+

FE � �
�
!p �
�1xx

�Z 1

0

Z r

0
e(r�s)Cidsdr

�
!21;

and

(29)
p
nT
�
�̂
+

RD � �
�
)MN

�
0;
�

RDxx

��1 �
�RDux +�

RD
fx

� �

RDxx

��1�
;

where �RDfx is de�ned analogously with �fx and �RDux .

�̂
+

Pool and �̂
+

RD thus provide pooled estimators for predictive regressions that are asymptotically

mixed normally distributed in the presence of common factors and with the allowance for �xed
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e¤ects in the latter. Standard t�tests and Wald tests can therefore be used; by simply using the

defactored data, the variance-covariance matrix can be estimated in a manner analogous to that

described above for the no common factors case. The practical implementation of these estimators

is thus very simple: Premultiply the data by M�H, and use the resulting variables in the original

estimation procedures.

As shown in the simulations below, the ���test of slope homogeneity appears robust to the

presence of factors �unlike the pooled t�tests� and I do not attempt to modify it to control for

common factors.

IV Finite Sample Evidence

A No Cross-Sectional Dependence

To evaluate the small sample properties of the panel data estimators proposed in this paper, a

Monte Carlo study is performed. In particular, I focus on the size and power properties of the

pooled t�tests. Equations (1) and (3) are simulated for the case with a single regressor. The

innovations (ui;t; vi;t) are drawn from normal distributions with mean zero, unit variance, and

correlations � = 0;�0:4;�0:7; and �0:95; there is no cross-sectional dependence. The local-to-

unity parameters Ci are drawn from a uniform distribution with support [�20;�2]. In analyzing

the power properties, the slope coe¢ cient � varies between �0:05 and 0:05, and is identical for

all i. The sample size is given by T = 100; n = 20. The intercepts �i are normally distributed

with mean and standard deviation equal to 0:005. All results are based on 10,000 repetitions. The

t�test based on the �xed e¤ects estimator using standard demeaning, �̂FE , and that based on the

recursively demeaned pooled estimator, �̂RD, are considered. Throughout the simulation study, the

normal distribution is used to determine signi�cance; i.e. the null is rejected for absolute test values

greater than 1:96.

Panel A in Table 1 shows the average rejection rates for the nominal �ve percent two sided

t�tests under the null hypothesis of � = 0. Panels A1 and A2 in Figure 1 show the corresponding

power curves of the tests for the cases of � = 0 and � = �0:95. Table 1 and the power curves in

Figure 1 clearly show the e¤ects of the second-order bias in the �xed e¤ects estimator; the test

based on the standard �xed e¤ects estimator severely over rejects under the null hypothesis for
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� = �0:95. The test based on the recursively demeaned estimator has rejection rates close to the

nominal size under the null, while maintaining decent power properties.11

B Common Factors

In this section, I repeat the Monte Carlo experiment above for the case when there is a common fac-

tor in the innovations. In particular, equations (1)-(4) are now simulated with a single regressor and

a single common factor ft = gt, drawn from a standard normal distribution. The factor loadings, i

and �i, are also normally distributed with means of minus one and plus one, respectively, and stan-

dard deviations equal to 2�1=2 in both cases. The innovations in the returns and regressor processes

are formed as 2�1=2 (0ift + ui;t) and 2
�1=2 (�0ift + vi;t), respectively, where (ui;t; vi;t) are drawn from

standard normal distributions; the scaling by 2�1=2 is performed in order to achieve an approxi-

mate unit variance in the innovations, which enables easier comparison with the cross-sectionally

independent case. As before, the correlation between ui;t and vi;t is set to � = 0;�0:4;�0:7; and

�0:95.

The results are shown in Panels B and C of Table 1 and in Panels B1, B2, C1, and C2 in Figure

1. Panel B in Table 1 and Panels B1 and B2 in Figure 1 show the outcomes of the Monte Carlo

experiments when the model generated with common factors is estimated using the estimators �̂FE

and �̂RD, which do not control for cross-sectional dependence. It is clear that when the common

factors are ignored in the estimation process, the actual size of the corresponding t�tests is very

far from the nominal size of 5 percent, with rejection rates above 30 percent under the null.

Panel C in Table 1 and Panels C1 and C2 in Figure 1 show the same results for the estimators

�̂
+

FE and �̂
+

RD, which do control for the common factors. The t�test based on the recursively

demeaned data, �̂
+

RD, now possesses good size and power properties. As before, the standard �xed

e¤ects estimator exhibits a �nite sample bias and extremely poor size properties.

C Test of Slope Homogeneity

The �nal set of simulations analyzes the �nite sample properties of the ���test of slope homogene-

ity. The setup is identical to that used above, with the exception of the slope coe¢ cients. Three

11Although not shown here, additional simulations also illustrate the asymptotic normality and unbiased nature of
the standard pooled estimator when �i = � for all i, as predicted by Theorem 1.
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di¤erent scenarios are considered. In the �rst, the null hypothesis is imposed and �i = � = 0. In

the two other cases, the slope coe¢ cients exhibit heterogeneity and are generated as �i = � + ��i,

where �i is a standard normal random variable, independently distributed across i, and � is equal

to 0:05 and 0:1, respectively. The cases with and without common factors are considered, although,

as described previously, no adjustment to the test is made when there are common factors. The

test is evaluated as a one-sided test with a nominal size of �ve percent; i.e. the null is rejected when

�� is greater than 1:65.

Panel A of Table 2 shows the results without any common factors and Panel B shows the results

with common factors. Under the null, the test is somewhat under sized, and marginally more so

when there are common factors. Unlike the t�tests analyzed above, the test of slope homogeneity

is thus not particularly sensitive to common factors in the data. Under the �rst alternative, with

� = 0:05, the power of the test is around 45 percent without common factors, and around 35

percent with common factors. Under the second alternative, with � = 0:1, the power rises to

above 90 percent in both cases. The relatively low power under the �rst alternative re�ects the

fact that it is di¢ cult to distinguish between such small absolute di¤erences between the �is, even

though the relative di¤erences are reasonably large; one should keep in mind that the test compares

across the cross-section of the data, which in the simulations only amounts to n = 20 observations.

Nevertheless, the test can serve as a useful diagnostic of panel homogeneity.

V Data Description

All of the data come from the Global Financial Data database and are on a monthly frequency.

Total returns, including direct returns from dividends, on market wide indices in 40 countries were

obtained, as well as the corresponding dividend- and earnings-price ratios and measures of the short

and long interest rates.

With the exception of Spain, the dividend-price ratio data is available over the same sample

period as the total stock returns. But, the other predictor variables are typically not available during

the whole sample of total stock returns. Due to the two world wars, France, Germany, Japan, and

the U.K. have some years during which no observations are available. Further, Spain�s total returns

data start in 1940, but no dividends data is available during 1968-1983. Thus, in the time-series
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analysis, separate regressions are �tted for each sample period for these �ve countries, and in the

pooled estimation separate intercepts are estimated. In Table 3, which presents the pooled results,

the row listing the number of �countries�in each panel can therefore include more than one count

of some countries.

As is conventional in the literature, the dividend-price ratio is de�ned as the sum of dividends

during the past year divided by the current price and the earnings-price ratio is de�ned as the

current price divided by the latest 12 months of available earnings. Short interest rate measures

come from Global Financial Data and use rates on 3-month T-bills when available or, otherwise,

private discount rates or interbank rates. The long rate is measured by the yield on long-term

government bonds. When available, a 10-year bond is used; otherwise, I use that with the closest

maturity to 10 years. The term spread is de�ned as the log di¤erence between the long and short

rates. Excess stock returns are de�ned as the return on stocks, in the local currency, over the local

short rate. This provides the international analogue of the typical forecasting regressions estimated

for U.S. data. All regressions are run at the one-month frequency using log-transformed variables

with the log excess returns over the domestic short rate as the dependent variable.

Countries are pooled into a global panel, as well as developed and emerging stock market panels,

according to the MSCI classi�cations.12

VI Empirical Results

In the empirical analysis, I conduct pooled regressions as well as time-series regressions for individual

countries. The results from the pooled regressions and summaries of the time-series results are

presented in Table 3. The time-series results for individual countries are given in Table 4. Each table

contains multiple panels, which correspond to the di¤erent forecasting variables. For the pooled

regressions, results from both the standard �xed e¤ects estimator, �̂FE , and the corresponding

t�statistic, tFE , as well as the estimator using recursively demeaned data, �̂RD and tRD, are

documented. Separate results are shown for the case when common factors are controlled for and

12According to the MSCI classi�cation scheme, there are actually three di¤erent groups of markets: developed,
emerging, and frontier markets. Here, I group together the emerging and frontier markets and refer to them as simply
emerging markets. The MSCI classi�ctions can be found at http://www.mscibarra.com/products/indices/intl.jsp; the
classi�cations used in this paper are as of February 2008. The group of emerging markets includes Argentina, Brazil,
Chile, Hungary, India, Israel, Jordan, Malaysia, Mauritius, Mexico, the Philippines, Poland, South Africa, Taiwan,
Thailand, and Turkey; the other countries shown in Table 4 are classi�ed as developed.
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when they are not. As discussed at length above, the tFE�test is not robust to the endogeneity and

persistence of the regressors, but provides an interesting illustration of the potential pitfalls of not

addressing these issues. The short interest rate and the term spread are generally less endogenous

and inference based on the �xed e¤ects estimator for these two variables will be fairly accurate (see

also the discussion on this topic in Campbell and Yogo (2006)); however, the �xed e¤ects t�test will

tend to greatly over reject the null for the dividend- and earnings-price ratio. In Table 3, signi�cant

results at the one-sided �ve percent level based on robust test-statistics from which proper inference

can be drawn, i.e. the t�statistic corresponding to �̂+RD, are indicated with a �.13

The results from the individual time-series regressions, shown in Table 4, are presented in a

similar manner to the pooled regressions. Since normal inference based on the OLS t�statistic

will generally be biased, inference based on a robust 90 percent con�dence interval for �i, using

the methods of Campbell and Yogo (2006), are also provided. If viewed as a test, this con�dence

interval can be seen as a �ve percent one-sided test and a rejection of the null hypothesis of no

predictability is indicated with a � next to the coe¢ cient estimate; for brevity, the actual con�dence

intervals are not shown. In Table 3, the number of individual time-series regressions that yield

signi�cant coe¢ cients according to the Campbell and Yogo test is indicated in the column labeled

CYsig.

A Testing for Slope Homogeneity

Before considering the empirical results for the di¤erent predictor variables, it is useful to brie�y

analyze the homogeneity of the slope coe¢ cients in the pooled predictive regressions. Table 3 shows

the outcome of the ���test of slope homogeneity; it is a one-sided test, and a value greater than

1:65 indicates that the null hypothesis of �i = � for all i is rejected at the �ve percent level. As

is seen, slope homogeneity can always be rejected for the global panel. For the developed panel,

homogeneity is only rejected in the dividend-price ratio regression using the full sample, which spans

a much larger range of time than the other panels since the dividend-price ratio is available further

back than any of the other predictor variables; when data before 1950 is dropped, slope homogeneity

can no longer be rejected. For the emerging market panels, the null of slope homogeneity is only

13Since the panels used in the estimation are typically unbalanced, i.e. not all time-series are of the same length, the
estimation procedures are modi�ed in a straightforward manner to allow for this; details are available upon request.

23



rejected in the regression with the short interest rate. These results thus support the notion that

countries within the groups of developed and emerging markets tend to be more homogenous in

terms of predictability than countries across these groups.

As shown previously, the pooled analysis is valid also when the slope coe¢ cients are not ho-

mogenous. However, the estimates from the global panels, and in a couple of instances from the

developed and emerging panels, are best interpreted as average relationships, and the corresponding

tests as tests of whether there is predictability on average in the data.

B The Earnings-Price Ratio

The results for the earnings-price ratio are presented in Panel A of Tables 3 and 4. There is minimal

evidence of a positive predictive relationship. Speci�cally, pooling the data at either the global or

developed market levels does not yield a signi�cant coe¢ cient, regardless of whether one controls

for common factors; however, there is evidence of a predictive relationship when pooling at the

emerging market level and controlling for common factors. To ensure that the developed market

results are not driven by the longer earnings-price ratio time-series available for the U.K. and the

U.S., I also estimate these pooled regressions when restricting the sample to observations after 1950.

The individual country time-series results con�rm the lack of evidence of a predictive relationship

in the pooled regressions. In particular, in the post-1950 sample, only four of the 38 time-series

regressions (Argentina, Jordan, South Africa, and the U.K.) yield any signi�cant coe¢ cients.

There is thus rather weak evidence that the earnings-price ratio predicts stock returns; the

majority of evidence that does exist is for emerging economies. It is noteworthy that the null of no

predictability would have been rejected in all of the pooled regressions if one relied on non-robust

methods that fail to control for the endogeneity and persistence of the regressors, as well as common

factors in the data. Controlling for common factors appears to be of potentially great importance.

It is interesting to note that doing so does not necessarily weaken the results.

C The Dividend-Price Ratio

Panel B in Table 3 shows the results from pooled regressions with the dividend-price ratio as the

regressor. The results are generally somewhat stronger than for the earnings-price ratio. Speci�cally,

when controlling for common factors, the coe¢ cient is signi�cant when pooling both at the post-
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1950 global level and the developed market level, as well as in the full sample emerging panel.

The overall picture depicted by the individual time-series regressions shown in Panel B of Table 4,

however, is still fairly weak, although evidence of predictability is observed for post-1950 Australia,

Chile, post-WWII Japan, Jordan, Mexico, Taiwan, the U.K., and post-1950 U.S. The time-series

evidence thus presents no clear pattern of predictability and the evidence that exists is distributed

fairly equally between developed and emerging markets. As in the case of the earnings-price ratio,

the null of no predictability would have been often rejected when using non-robust tests.

D The Short Interest Rate

In light of the empirical evidence of a predictive relationship seen in U.S. data, one would expect

there to be a negative relationship between the current short rate and future stock returns. The data

used in all interest rate regressions are restricted to start in 1952 or after, following the convention

used in studies with U.S. data.14 The pooled results for the short interest rate are presented in

Panel C of Table 3.

The null of no predictability is strongly rejected in the pooled sample of developed markets. In

contrast to this strongly signi�cant negative relationship, the pooled relationship in the emerging

markets is not signi�cant. Given the rather capricious character of interest rates in many emerging

economies (e.g. Argentina), I focus strictly on the developed market results. As seen in Panel C

of Table 4, this �nding of predictability is supported by the results of the individual time-series

regressions for the developed markets. In particular, a signi�cant predictive relationship is found

in eight out of 23 developed markets, including: Canada, Germany, the Netherlands, New Zealand,

Portugal, Spain, Switzerland, and the U.S.. In addition, a closer look at the individual country

level results further strengthens this pattern; in particular, it reveals that the estimates for 15

of the developed markets are more than one standard deviation away from zero while the slope

coe¢ cient estimate is negative for 20 of the 23 countries.

14 In the U.S., the interest rate was pegged by the Federal Reserve before this date. Of course, in other countries,
deregulation of the interest rate markets occurred at di¤erent times, most of which are later than 1952. As seen in
the international �nance literature (e.g. Kaminsky and Schmukler (2002)), however, it is often di¢ cult to determine
the exact date of deregulation. And, if one follows classi�cation schemes, such as those in Kaminsky and Schmukler
(2002), then most markets are not considered to be fully deregulated until the 1980s, resulting in a very small sample
period to study. Thus, the extent to which observed interest rates re�ect actual market rates is hard to determine
and one should keep this caveat in mind when interpreting the results.
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E The Term Spread

Based on the U.S. experience, one would expect there to be a positive predictive relationship, if

any, between the term spread and stock returns. As in the case of the short interest rate, I �nd

a positive signi�cant predictive relationship only in developed markets. As shown in Panel D of

Table 3, there is strong evidence of a predictive relationship when pooling the developed economies.

As this relationship is not evident for the emerging markets, I once again focus on the results for

the developed markets. As seen in Panel D of Table 4, this �nding of predictability is supported

strongly by the results of the individual time-series regressions for the developed markets. For 10

of 23 individual time-series regressions, there is a positive and signi�cant predictive relationship:

Canada, France, Germany, Italy, the Netherlands, New Zealand, Norway, Spain, Switzerland, and

the U.S.. Furthermore, 14 countries have a coe¢ cient that is more than one standard deviation

from zero.

F Stability over Time

How robust are these patterns of predictability to di¤erent sample periods? To analyze this, I

consider pooled regressions with expanding windows of observations for the developed markets.

I focus on the developed panel since the time-series in that panel typically have longer samples

available. A new country is added to the expanding window regression when there are �ve years

of observations available; no �old�observations are ever dropped from the estimation window and

the estimates at each point in time are thus based on all observations available up to that date.15

Con�dence intervals, with a nominal 90 percent coverage rate, are calculated in a manner analogous

to the test statistics shown in Table 3, based on the normal distribution. The left column of Figure

2 shows the results from using the standard �xed e¤ects estimator, without controlling for common

factors. The right column shows the results from the estimator using recursively demeaned data

and controlling for common factors. The con�dence intervals in the left column are thus typically

biased and will generally not have an actual coverage rate of 90 percent; however, these results

further illustrate the importance of controlling for endogeneity and common factors.

The results presented in Figure 2 mostly re�ect those discussed above based on the complete

15The term �expanding window regression� is used instead of �recursive regression�as to avoid confusion with the
pooled estimator using recursive demeaning.
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sample. However, the results for the dividend-price ratio (d� p), which generally appeared some-

what stronger than those for the earnings-price ratio (e� p), now appear very weak when viewed

over time. Overall, the support of any stable predictive ability in either of these two variables is very

weak. The term spread (y � rs) coe¢ cient �uctuates around zero until the late 1970s, after which

the lower bound of the con�dence interval typically hovers above zero, although the coe¢ cient is

only consistently signi�cant after 1993. It is only for the short rate (rs) that the coe¢ cient is signif-

icantly di¤erent from zero during the whole sample period that is analyzed. The overall instability

of the regression coe¢ cients over time is in line with the results of the formal test procedures of

Pettenuzzo and Timmermann (2005) and Paye and Timmermann (2006).

Given the relative strength of the �ndings for the short interest rate and the term spread

found so far, I also present expanding window regression estimates for individual country time-

series regressions for these two variables. The time-series OLS estimates for the short interest rate,

with corresponding robust 90 percent con�dence intervals calculated using the Campbell and Yogo

method, are shown in Figure 3, for the twelve developed markets with the longest sample periods.16

For all of the countries considered, except Japan, a very similar pattern is evident. After around

1980, the estimated coe¢ cients and con�dence intervals stabilize; in most cases, this occurs on or

below zero, indicating a signi�cant or near signi�cant negative relationship. The analogous results

for the term spread are shown in Figure 4. These show a similar pattern to that found for the short

interest rate, but overall the results are perhaps somewhat weaker.

G Out-of-Sample Evidence

Finally, the out-of-sample predictability of stock returns is considered, using the forecasting variables

discussed above. To allow for a su¢ cient sample size in the out-of-sample analysis, which requires

an initial �training-sample�to obtain the estimates on which the �rst round of forecasts is based,

I exclude all countries with less than 40 years of data; this allows for a 20-year training period

and a minimum of a 20-year forecasting period. In each period following the �rst twenty years,

the coe¢ cients are re-estimated, with the latest observations included. Next period�s returns are

forecasted based on the estimated regression equation. These �conditional�forecasts, based on the

16Since the con�dence intervals are not based directly on the OLS estimate, they are not necessarily symmetric
around the point estimate. In fact, the OLS point estimate need not be inside the con�dence interval, as is the case
for Spain in Figure 3.
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regression model, are compared to the �unconditional�forecasts, which in each period are identical to

the sample mean of the then available past returns. To compare the conditional and unconditional

forecasts, an out-of-sample R2 is calculated,

(30) R2i;OS = 1�
PT
t=s (yi;t � ŷi;t)

2PT
t=s (yi;t � �yi;t)

2
;

where ŷi;t and �yi;t are the conditional and unconditional forecasts, respectively, and s is the length of

the training sample. The R2i;OS statistic will be positive when the conditional forecast outperforms

the unconditional one. I consider out-of-sample forecasts that are based on both the time-series and

pooled �xed e¤ects estimates of the slope coe¢ cients in the forecasting regressions. It is possible that

the pooled estimate yields better out-of-sample performance if the time-series estimate is imprecise

due to fewer available observations, even though the �tting of individual coe¢ cients for each country

allows for more freedom.

The forward demeaning used in the recursively demeaned estimator makes it less suitable for

out-of-sample exercises. The standard �xed e¤ects estimator is therefore used, even though it will

tend to produce biased estimates for the valuation ratios, which may limit the bene�ts of using

pooled estimates for these variables when forming forecasts.

Although the strongest in-sample results were found for the interest rate variables, it is still worth

brie�y considering the out-of-sample performance of the valuation ratios. As seen in Panels A and B

of Table 5, there are three countries where the earnings-price ratio is a signi�cant predictor according

to the Campbell and Yogo test, and two countries where the dividend-price ratio is signi�cant. For

each of the regressions, which delivered signi�cant in-sample results with the earnings-price ratio as

a predictor, the out-of-sample R2 is positive when the forecasts are based on either the time-series

estimates or the pooled estimates. The results for the dividend-price ratio are overall weaker, with

the out-of-sample R2 most often negative.

As seen in Panel C of Table 5, there are �ve countries for which the domestic short rate has

a signi�cant negative predictive relationship. For these �ve countries, the out-of-sample R2 are

positive in three cases when using the conditional forecasts that are based on the pooled estimates;

using the time-series based forecasts, the out-of-sample R2 for Spain alone is positive. In total,

there are 10 countries for which the estimated coe¢ cients are more than one standard deviation
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away from zero (with the right sign), and for six of these the out-of-sample R2 are positive when

using the pooled forecasts, but only for one when using the time-series based forecasts.

Panel D of Table 5 presents the results for the term spread. In this case, a signi�cant in-sample

predictive relationship is seen in seven countries, according to the Campbell and Yogo test, and ten

countries have (positive) coe¢ cients that are more than one standard deviation away from zero.

When basing the forecasts on the pooled estimates, the conditional forecast beats the unconditional

one in all seven of the countries with signi�cant in-sample results, and in nine out of ten of the

countries with a t�statistic greater than one. For the time-series based forecasts, the unconditional

forecast is beaten only in four out of the seven signi�cant countries and in �ve out of ten of the

countries with a t�statistic greater than one.

Overall, the results in Table 5 provide some evidence that a signi�cant in-sample relationship

also tends to be associated with out-of-sample predictive power, particularly for the term spread.17

In addition, forecasts based on the pooled estimates typically out-perform forecasts based on the

time-series estimates. Thus, it is possible that pooled methods could be useful in reducing risk when

using conditional forecasts in portfolio choice.

VII Conclusion

I analyze stock return predictability in a large global data set with 40 di¤erent markets and develop

new econometric methods for predictive regressions with panel data. The theoretical results provide

an important extension to the existing literature on time-series methods for predictive regressions

and show that a careful analysis of the impact of nearly persistent and endogenous regressors is

required also in the panel data case.

The empirical analysis delivers two main �ndings: (i) Traditional valuation measures such as

the dividend- and earnings-price ratios have very limited predictive ability in international data. It

is evident, however, that using methods that do not account for the persistence and endogeneity of

these variables would lead one to vastly misjudge their predictive powers. (ii) Interest rate variables

are more robust predictors of stock returns, although their predictive power is mostly evident in

17Campbell and Thompson (2004) argue that by imposing some weak restrictions on stock return forecasts, their
performance can be greatly improved. Results not presented in this paper show that by imposing the sign restrictions
proposed by Campbell and Thompson, the out-of-sample results provided here can be substantially strengthened.
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developed markets.

The international results for the interest rate variables are similar to those of the U.S. while the

overall �ndings for the earnings- and dividend-price ratios are substantially weaker. In summary,

the results presented in this paper provide strong evidence that there is a predictable component

in stock returns, which is captured at least partially by interest rate variables.
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A Formal Assumptions

Assumption 1 (Autoregressive roots) The auto-regressive roots Ai, or equivalently the local-to-

unity parameters Ci, are iid random variables independently distributed of other random elements

in the model.

Assumption 2 (Factor loadings)

1. The factor loadings i (l � 1) and �i (k �m) are random coe¢ cients that are iid across i

and independently distributed of the speci�c errors, uj;t and vj;t, and the common factors ft and gt,

for all i; j; and t, with �xed means  and �, and �nite variances

2. Rank(�) = k.

The rank condition on � is required for identi�cation in the estimation procedures that control

for the common factors. It essentially states that all information regarding the common factors in

the regressors can potentially be recovered from the data on the regressors.

Assumption 3 (Innovations) Let wi;t = (ui;t; vi;t; ft; gt)
0 and $i;t = (ui;t; �i;t; ft; �t)

0 with the

corresponding �ltration Ft = f$i;sj s � t; i = 1; :::; ng. Then, for all i = 1; :::; n; and t = 1; :::; T :

1. E [$i;tj Ft�1] = 0, E
h
$i;t$

0
i;t

i
= �i, and E

h
jj$i;tjj4

i
<1.

2. The innovations to the regressor, vi;t and gt, are general linear processes that satisfy vi;t =

D�i (L) �i;t =
P1
j=0D

�
i;j�i;t�j with �D�j � supi

������D�i;j������ < 1 and
P1
j=0 j

������ �D�j������ < 1, and gt =

D� (L) �t =
P1
j=0D

�
j �t�j with

P1
j=0 j

������D�j ������ <1.
3. The long-run variance-covariance matrix of wi;t is given by 
i = [(
uv;i; 0) ; (0;
fg)]

0 ; where


uv;i = [(!11i; !12i) ; (!21i;
22i)]
0.

4. 
 = limn!1 1
n

Pn
i=1
i.

5. E
�
(ui;t; vi;t) (uj;s; vj;s)

0� = 0 for all t; s and i 6= j.
The innovations to the dependent variable, ui;t and ft, satisfy martingale di¤erence sequences

(mds) and the innovations to the regressor, vi;t and gt, are assumed to follow general linear processes.

The idiosyncratic innovations (ui;t; vi;t) are independent of the common factors (ft; gt), and cross-

sectionally independent.

By standard arguments, 1p
T

P[Tr]
t=1 wi;t ) Bi (r) = BM (
i) (r), whereBi (�) = (B1i (�) ; B2i (�) ; Bf (�) ; Bg (�))0

denote a 1+m+l+k�dimensional Brownian motion. Further, by the results in Phillips (1987, 1988),
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it follows that as T !1, xi;tp
T
=

x0i;tp
T
+ �0i

zitp
T
) Ji (r) + �

0
iJg (r), where Ji (r) =

R r
0 e

(r�s)CidB2;i (s)

and Jg (r) =
R r
0 e

(r�s)CgdBg (s). Analogous results hold for the time-series demeaned data, xi;t =

xi;t � 1
T

PT
t=1 xi;t, with Ji replaced by J i = Ji �

R 1
0 Ji; when there is no risk of confusion, the

dependence of Ji; Jg and Bi on r will be suppressed. Finally, the following two lemmas summarize

the key asymptotic results that are used to prove the main results in the paper.

Lemma 1 As (T; n!1)seq ;

(a) n�1=2
Pn
i=1 T

�1PT
t=1 ui;txi;t�1 )MN (0;�ux +�uz) where �ux � E

��R 1
0 dB1;iJi

��R 1
0 dB1;iJi

�0�
,

�uz � �0
�
E

��R 1
0 dB1;iJg

��R 1
0 dB1;iJg

�0���� C���, and C is the ���eld generated by fft; gtg1t=1.
(b) n�1

Pn
i=1 T

�1PT
t=1 

0
iftxi;t�1 )

R 1
0 (

0dBf ) (�
0Jg) :

(c) n�1=2
Pn
i=1 T

�1PT
t=1 

0
iftx

0
i;t�1 )MN (0;�fx) where �fx = 0E

��R 1
0 dBfJi

��R 1
0 dBfJi

�0���� C� .
(d) n�1

Pn
i=1 T

�2PT
t=1 xi;tx

0
i;t ) 
xx+
zz where 
xx � E

hR 1
0 JiJ

0
i

i
and 
zz � �0

�R 1
0 JgJ

0
g

�
�:

(e) n�1
Pn
i=1 T

�1PT
t=1 ui;txi;t�1 !p �

�R 1
0

R r
0 E

�
e(r�s)Ci

�
dsdr

�
!21:

(f) n�1
Pn
i=1 T

�1PT
t=1 

0
if txi;t�1 )

R 1
0 (

0dBf )
�
�0Jg

�
:

(g) n�1
Pn
i=1 T

�2PT
t=1 xi;tx

0
i;t ) 
xx+
zz where 
xx � E

hR 1
0 J iJ

0
i

i
and 
zz � �0

�R 1
0 JgJ

0
g

�
�:

Lemma 2 The following orders of magnitudes hold:

1.
�X00
�;�1

�X0
�;�1

T 2
is of order Op

�
1
n

�
:

2.
Z0�1

�X0
�;�1

T 2
;
u0i
�X0
�;�1
T ;

f 0 �X0
�;�1
T ; and 1p

n

Pn
i=1

X00
i;�1

�X0
�;�1

T 2
are of order Op

�
1p
n

�
:

B Technical Proofs

Proof of Lemma 1. Only part (a) is shown since the rest follow in a similar manner. By standard

results and the continuous mapping theorem (CMT), for a �xed i as T !1;

1

T

TX
t=1

ui;txi;t�1 =
1

T

TX
t=1

�
ui;tx

0
i;t�1 + ui;t�

0
izt�1

�
)
Z 1

0
dB1;iJi + �

0
i

�Z 1

0
dB1;iJg

�
:

Since ui;t, and hence B1;i, are cross-sectionally independent, by the central limit theorem (CLT) as

n!1,
1p
n

nX
i=1

Z 1

0
dB1;iJi ) N

 
0; E

"�Z 1

0
dB1;iJi

��Z 1

0
dB1;iJi

�0#!
:
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Conditional on Jg (or C),
R 1
0 dB1;iJg is iid with mean zero and, using similar arguments as in

Andrews (2005),

1p
n

nX
i=1

�0i

�Z 1

0
dB1;iJg

�
)MN

 
0; E

"
�0i

�Z 1

0
dB1;iJg

��Z 1

0
dB1;iJg

�0
�i

����� C
#!

:

Proof of Lemma 2. As T !1,

�X00�;�1 �X
0
�;�1

T 2
=
1

T 2

TX
t=1

�x0�;t�1�x
00
�;t�1 =

1

n

1

n

nX
i=1

nX
k=1

1

T 2

TX
t=1

x0i;t�1x
00
j;t�1 )

1

n

 
1

n

nX
i=1

nX
k=1

Z 1

0
JiJ

0
j

!
= Op

�
1

n

�
Op (1) ;

since
R 1
0 JiJ

0
k is iid with mean zero for all i 6= j. The rest follow in an analogous manner.

Proof of Theorem 1. Note that

~xi;t=[Tr]p
T

=
xi;tp
T
� 1

n

nX
i=1

1

T 3=2

TX
t=1

xi;t =
xi;tp
T
+Op

�
1p
n

�
) Ji (r) ;

so that the demeaning has no asymptotic e¤ects (as opposed to in the �xed e¤ects case). The result

therefore follows directly by (a) and (c) in Lemma 1, with �uz = 0 and 
zz = 0, and the CMT.

Proof of Theorem 2. Note �rst that, by the continuous mapping theorem, as T !1 for a �xed

i,
xddi;tp
T
=
xi;tp
T
�
�
T � t+ 1

T

��1 1
T

TX
s=t

xi;sp
T
) Ji (r)� (1� r)�1

Z 1

r
Ji (u) du = J

dd
i (r) :

Now, for �xed n, as T !1,

p
nT
�
�̂RD � �

�
=

 
1

n

nX
i=1

1

T 2

TX
t=1

xddi;t�1x
0
i;t�1
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1p
n

nX
i=1

1

T

TX
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)
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0
Jddi J
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1p
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i
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!
;
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where �rB1;i (1) � B1;i (1)�B1;i (r), since
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by standard arguments. By the independent increments property of the Brownian motion, it follows

that the expectation of (31) is equal to zero. Denote 
RDxx = E
hR 1
0 J

dd
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0
i

i
, and
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and the result follows from similar arguments as before.

Proof of Theorem 3. Since �i = � + �i, it follows as (T; n!1)seq,
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since the ui;t term is asymptotically irrelevant. In part (b), E
h�R 1

0 J iJ
0
i

�
�i

i
6= 0, and the result

follows.

Proof of Theorem 4. Under the null of �i = � for all i, using the matrix notation of Section III,
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0
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0 e
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p
!11iW1;i; W1;i and W2;i

are thus standardized Brownian motions with correlation �i. That is, �i is the correlation between
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ui;t and vi;t, and let � = limn!1 n�1
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i=1 �i be the average correlation. For a �xed n, as T !1,
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n Ŝ� � �Z

�.
�Z

�
) N (0; 1) : Write W1;i = W1�2;i + �

0
iW2;i, where W1�2;i is orthogonal to

W2;i. It follows easily, as n!1,

E
�
�Zi;n
�
! pE

"�Z 1

0
dW1�2;iJ

W 0
i

��Z 1

0
JWi J

W 0
i

��1�Z 1

0
JWi dW1�2;i

�#

+�0E

"�Z 1

0
dW2;iJ

W 0
i

��Z 1

0
JWi J

W 0
i

��1�Z 1

0
JWi dW

0
2;i

�#
�

��0E
�Z 1

0
dW2;iJ

W 0
i

�
E

�Z 1

0
JWi J

W 0
i

��1
E

�Z 1

0
JWi dW

0
2;i

�
�:

Proof of Theorem 5. The results follow immediately from Lemma 1 and the CMT.

Proof of Theorem 6. Note that,
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and as (T; n!1)seq, 1p
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Proof of Corollary 1. The result follows in an identical manner to above.
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Table 1: Size Results from the Monte Carlo Study. The table shows the average rejection rates under the
null of � = 0, for the t�tests corresponding to the respective estimators; the nominal size of the tests are 5
percent. The di¤ering values of � are given in the top row of the table and the results are based on 10; 000
repetitions. The sample size used is T = 100 and n = 20. Panel A shows the results when no common factors
are included in the data generating process, Panel B shows the e¤ects of including common factors in the
data but ignoring them in the estimation, and Panel C shows the results when common factors are included
and accounted for in the estimation.

Estimator � = 0:0 � = �0:4 � = �0:7 � = �0:95
Panel A: No Common Factor

�̂FE 0.078 0.177 0.379 0.563
�̂RD 0.069 0.071 0.071 0.074

Panel B: Common Factor with no Correction

�̂FE 0.430 0.503 0.559 0.604
�̂RD 0.353 0.348 0.356 0.347

Panel C: Common Factor Using Correction

�̂
+

FE 0.026 0.065 0.157 0.284

�̂
+

RD 0.029 0.031 0.039 0.052



Table 2: Size and Power for the Test of Slope Homogeneity. The table shows the average rejection rates
for the ���test of slope homogeneity under the null of �i = � = 0 for all i, as well as under two di¤erent
alternative hypotheses; the nominal size of the test is 5 percent. The alternative hypotheses are given by
�i = � + ��i, where �i is a standard normal random variable, independent across i, and � is equal to 0:05
and 0:1 under Alternative 1 and Alternative 2, respectively. The di¤ering values of � are given in the top row
of the table and the results are based on 10; 000 repetitions. The sample size used is T = 100 and n = 20.
Panel A shows the results when no common factors are included in the data generating process and Panel B
shows the e¤ects of including common factors in the data.

� = 0:0 � = �0:4 � = �0:7 � = �0:95
Panel A: No Common Factor

Null 0.014 0.015 0.014 0.016
Alternative 1 0.453 0.450 0.445 0.439
Alternative 2 0.958 0.955 0.956 0.951

Panel B: Common Factor

Null 0.007 0.008 0.007 0.009
Alternative 1 0.367 0.347 0.346 0.324
Alternative 2 0.923 0.922 0.916 0.913
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Table 4: Country Level Results. The �rst and second columns indicate the country and sample period,
respectively, on which the estimates are based. The third and fourth columns show the OLS estimates and
corresponding t�statistics, respectively. A � next to the coe¢ cient estimate indicates that the coe¢ cient
is signi�cantly di¤erent from zero, with the expected sign, according to the robust 90 percent con�dence
interval obtained from the Campbell and Yogo procedure; this is equivalent to a one-sided rejection of the
null hypothesis at the �ve percent level.

Country Sample �̂i ti Country Sample �̂i ti

Panel A. The Earnings-Price Ratio Panel B. (continued)
Argentina 1988:1� 2004:6 0.041� 2.277 Canada 1934:3� 2004:6 0.006 1.592
Australia 1962:1� 2004:6 0.010 1.468 1950:1� 2004:6 0.007 1.483
Austria 1981:11� 2004:6 0.002 0.423 Chile 1983:3� 2004:6 0.019� 2.234
Belgium 1969:9� 2004:6 0.012 1.305 Denmark 1970:2� 2004:6 0.000 0.071
Brazil 1988:3� 2004:5 0.022 1.632 Finland 1962:3� 2004:6 -0.004 -0.742
Canada 1956:3� 2004:6 0.000 0.064 France 1898:1� 1914:7 0.048 1.681
Chile 1988:3� 2004:6 0.024 2.324 1919:2� 1940:3 0.018 0.813
Denmark 1970:1� 2004:6 0.001 0.165 1941:5� 2004:6 -0.001 -0.353
Finland 1988:3� 2004:6 -0.005 -0.615 1950:1� 2004:6 0.004 0.836
France 1971:11� 2004:6 -0.001 -0.112 Germany 1872:9� 1942:3 0.035 2.123
Germany 1969:9� 2004:6 0.008 1.359 1953:2� 2004:6 0.003 0.451
Greece 1977:3� 2004:6 -0.003 -0.302 Greece 1977:3� 2004:6 0.003 0.505
Hong Kong 1973:1� 2004:6 0.060 3.610 Hong Kong 1973:1� 2004:6 0.070 4.108
Hungary 1993:3� 2004:6 0.001 0.088 Hungary 1993:12� 2004:6 0.017 0.874
India 1988:3� 2003:12 0.025 1.640 India 1988:3� 2003:12 0.036 2.213
Ireland 1990:7� 2004:6 0.034 1.731 Ireland 1990:7� 2004:6 0.047 2.775
Italy 1981:3� 2004:6 0.005 0.959 Israel 1994:1� 2004:6 0.018 1.139
Japan 1956:3� 2004:6 0.006 1.864 Italy 1925:3� 2004:6 -0.006 -1.623
Jordan 1988:3� 2003:2 0.025� 1.787 1950:1� 2004:6 0.006 0.988
Malaysia 1973:1� 2004:6 0.022 1.553 Japan 1922:1� 1942:1 -0.008 -0.665
Mauritius 1996:3� 2002:12 0.003 0.225 1949:7� 2004:6 0.006� 2.474
Mexico 1988:1� 2004:6 0.017 0.959 Jordan 1988:2� 2003:2 0.013� 1.802
Netherlands 1969:9� 2004:6 0.002 0.439 Luxembourg 1985:2� 1994:12 -0.007 -0.512
New Zealand 1988:3� 2004:6 -0.007 -0.979 Malaysia 1973:1� 2004:6 0.042 2.776
Norway 1970:1� 2001:9 -0.004 -0.764 Mauritius 1997:1� 2002:12 0.004 0.515
Philippines 1982:3� 2004:5 0.011 0.837 Mexico 1988:3� 2004:6 0.037� 2.273
Poland 1992:3� 2004:5 0.025 1.398 Netherlands 1969:9� 2004:6 0.004 0.720
Portugal 1988:3� 2004:6 0.010 0.832 New Zealand 1987:1� 2004:6 0.039 2.290
Singapore 1973:1� 2004:6 0.041 2.821 Norway 1970:2� 2001:9 0.008 0.937
South Africa 1960:3� 2004:6 0.020� 2.277 Philippines 1982:3� 2004:5 0.003 0.635
Spain 1980:1� 2004:6 0.018 1.405 Poland 1993:12� 2004:5 0.045 2.451
Sweden 1969:9� 2004:6 0.002 0.343 Portugal 1988:4� 2004:6 -0.004 -0.367
Switzerland 1969:9� 2004:6 -0.006 -0.879 Singapore 1973:1� 2004:6 0.034 2.714
Taiwan 1988:3� 2004:1 0.043 1.761 South Africa 1960:4� 2004:6 0.018 2.063
Thailand 1975:6� 2004:6 0.013 1.300 Spain 1940:6� 1968:12 0.002 0.230
Turkey 1986:3� 2004:6 0.035 2.706 1981:3� 2004:6 0.003 0.638
UK 1928:1� 2004:6 0.010� 2.471 Sweden 1919:2� 2004:6 -0.002 -0.532

1950:1� 2004:6 0.011� 2.513 1950:1� 2004:6 0.006 1.140
USA 1871:3� 2004:6 0.011� 3.398 Switzerland 1966:4� 2004:6 0.001 0.091

1950:1� 2004:6 0.007 1.874 Taiwan 1988:3� 2004:1 0.024� 2.188
Panel B. The Dividend-Price Ratio Thailand 1976:1� 2004:6 0.004 0.620

Argentina 1988:3� 2004:6 -0.003 -0.224 Turkey 1986:4� 2004:6 0.041 2.687
Australia 1882:12� 2004:6 0.005 1.416 UK 1836:1� 1916:12 0.006 1.585

1950:1� 2004:6 0.013� 1.916 1924:2� 2004:6 0.018� 2.970
Austria 1970:2� 2004:6 0.001 0.196 1950:1� 2004:6 0.026� 3.550
Belgium 1952:1� 2004:6 0.003 0.694 USA 1871:3� 2004:6 0.004 1.105
Brazil 1988:3� 2004:5 0.000 -0.016 1950:1� 2004:6 0.009� 2.294



Table 4: Country Level Results (continued).
Country Sample �̂i ti Country Sample �̂i ti

Panel C. The Short Interest Rate Panel D. The Term Spread
Argentina 1988:1� 2004:5 2.034 5.349 Argentina 1997:1� 2004:6 2.682� 2.169
Australia 1952:1� 2004:3 -0.711 -1.260 Australia 1952:1� 2004:6 1.428 1.056
Austria 1970:1� 2004:5 -1.739 -1.179 Austria 1970:1� 2004:6 -0.976 -0.345
Belgium 1952:1� 2004:6 -0.514 -0.682 Belgium 1952:1� 2004:6 0.822 0.366
Brazil 1988:1� 2004:5 -0.042 -0.417 Brazil 1994:1� 2004:5 0.006 0.005
Canada 1952:1� 2004:5 -1.489� -2.540 Canada 1952:1� 2004:6 3.387� 2.467
Chile 1983:1� 2004:5 0.770 1.418 Denmark 1970:1� 2004:6 0.591 0.520
Denmark 1970:1� 2004:5 -0.528 -0.917 Finland 1962:1� 2004:6 2.559 1.345
Finland 1962:1� 2004:5 -1.369 -1.541 France 1952:1� 2004:6 2.902� 1.646
France 1952:1� 2004:5 -1.022 -1.399 Germany 1953:1� 2004:6 3.402� 1.780
Germany 1953:1� 2004:5 -3.201� -2.572 Greece 1993:3� 2004:6 -4.889 -1.212
Greece 1977:1� 2004:5 1.689 1.440 Hong Kong 1994:11� 2004:6 0.271 0.029
Hong Kong 1970:1� 2004:5 -3.076 -1.355 Hungary 1997:4� 2004:6 3.692 0.308
Hungary 1991:3� 2004:5 -0.922 -0.698 India 1988:1� 2003:12 1.813 0.936
India 1988:1� 2003:12 -1.368 -0.794 Ireland 1988:3� 2004:6 0.111 0.069
Ireland 1988:3� 2004:5 -0.338 -0.292 Italy 1952:1� 2004:6 2.656� 1.659
Israel 1993:1� 2004:5 2.489 1.219 Japan 1952:1� 2004:6 -3.154 -1.997
Italy 1952:1� 2004:5 -0.886 -1.512 Malaysia 1972:12� 2004:6 3.579 0.911
Japan 1952:1� 2004:5 1.182 1.178 Mexico 1995:3� 2004:6 -0.488 -0.227
Jordan 1988:1� 2003:2 -6.669� -3.393 Netherlands 1952:1� 2004:6 2.922� 1.824
Malaysia 1972:12� 2004:5 -4.135 -1.091 New Zealand 1986:8� 2004:6 10.240� 4.099
Mauritius 1989:9� 2004:5 -7.398� -3.635 Norway 1970:1� 2001:9 3.022� 1.497
Mexico 1988:1� 2004:6 -0.011 -0.030 Philippines 1994:11� 2004:5 -0.966 -0.331
Netherlands 1952:1� 2004:5 -1.932� -2.213 Poland 1994:4� 2004:5 3.553 0.529
New Zealand 1986:8� 2004:3 -4.346� -3.915 Portugal 1988:3� 2004:6 5.605 1.142
Norway 1970:1� 2001:9 -1.589 -1.223 Singapore 1988:1� 2004:6 11.227 1.415
Philippines 1982:1� 2004:5 -0.173 -0.175 South Africa 1960:3� 2004:6 2.240 1.425
Poland 1991:6� 2004:5 0.039 0.033 Spain 1952:1� 2004:6 3.678� 3.555
Portugal 1988:3� 2004:5 -2.221� -1.986 Sweden 1952:1� 2004:6 -0.106 -0.061
Singapore 1970:1� 2004:5 -0.308 -0.153 Switzerland 1966:3� 2004:6 3.234� 1.769
South Africa 1960:3� 2004:5 -0.991 -1.354 Taiwan 1995:3� 2004:1 -4.869 -0.388
Spain 1952:1� 2004:5 -1.609� -3.045 Thailand 1977:2� 2004:6 6.253� 2.275
Sweden 1952:1� 2004:5 0.475 0.651 Turkey 1997:11� 2004:6 -1.474 -1.065
Switzerland 1966:3� 2004:6 -2.492� -2.010 UK 1952:1� 2004:6 0.941 0.711
Taiwan 1988:1� 2004:1 -4.339 -0.798 USA 1952:1� 2004:6 4.946� 2.826
Thailand 1975:6� 2004:6 -5.321� -3.540
Turkey 1986:3� 2004:6 0.518 0.595
UK 1952:1� 2004:5 -0.475 -0.629
USA 1952:1� 2004:5 -1.825� -2.558



Table 5: Out-of-Sample Results. The �rst and second columns indicate the country and the sample period
that are used, respectively. The next three columns show the in-sample standard t�statistic, the full sample
R2 expressed in percent, and whether the in-sample coe¢ cient estimate is found sign�cant according to the
Campbell and Yogo test. The following two columns show the out-of-sample R2 expressed in percent, based
on the time-series estimates and the pooled estimates, respectively.

In-Sample Time-Series Pooled
Country Sample ti 100�R2i CYsig 100�R2i;OS 100�R2i;OS

Panel A. The Earnings-Price Ratio

Australia 1962:1� 2004:6 1.468 0.423 NO -0.910 -0.138
Canada 1956:3� 2004:6 0.064 0.001 NO -0.529 -1.719
Japan 1956:3� 2004:6 1.864 0.598 NO 0.289 0.606
South Africa 1960:3� 2004:6 2.277 0.969 YES 0.899 0.644
UK 1928:1� 2004:6 2.471 0.662 YES 0.396 0.627
USA 1871:3� 2004:6 3.398 0.718 YES 0.435 0.570

Panel B. The Dividend-Price Ratio

Australia 1882:12� 2004:6 1.416 0.138 NO -0.328 0.012
Belgium 1952:1� 2004:6 0.694 0.077 NO -0.493 -0.047
Canada 1934:3� 2004:6 1.592 0.300 NO -0.160 -0.294
Finland 1962:3� 2004:6 -0.742 0.109 NO -0.584 -0.097
France 1941:5� 2004:6 -0.353 0.016 NO -0.186 0.151
Germany 1953:2� 2004:6 0.451 0.033 NO -0.268 -0.032
Italy 1925:3� 2004:6 -1.623 0.276 NO -1.280 -0.661
Japan 1949:7� 2004:6 2.474 0.921 YES -0.355 0.247
South Africa 1960:4� 2004:6 2.063 0.798 NO 0.808 0.052
Sweden 1919:2� 2004:6 -0.532 0.028 NO -0.530 -0.044
UK 1924:2� 2004:6 2.970 0.908 YES 0.203 -0.241
USA 1871:3� 2004:6 1.105 0.076 NO -0.310 -0.571

Panel C. The Short Interest Rate

Australia 1952:1� 2004:3 -1.260 0.254 NO -0.990 -0.828
Belgium 1952:1� 2004:6 -0.682 0.074 NO -0.812 -0.569
Canada 1952:1� 2004:5 -2.540 1.019 YES -0.286 -0.383
Finland 1962:1� 2004:5 -1.541 0.466 NO -0.024 0.278
France 1952:1� 2004:5 -1.399 0.311 NO -0.375 0.048
Germany 1953:1� 2004:5 -2.572 1.064 YES -0.141 0.702
Italy 1952:1� 2004:5 -1.512 0.363 NO -1.881 -0.548
Japan 1952:1� 2004:5 1.178 0.221 NO -0.355 -0.948
Netherlands 1952:1� 2004:5 -2.213 0.775 YES -0.777 -0.033
South Africa 1960:3� 2004:5 -1.354 0.345 NO -0.890 0.382
Spain 1952:1� 2004:5 -3.045 1.457 YES 0.093 2.970
Sweden 1952:1� 2004:5 0.651 0.068 NO -0.894 -1.898
UK 1952:1� 2004:5 �0.629 0.063 NO -1.705 -1.855
USA 1952:1� 2004:5 -2.558 1.032 YES -1.134 0.902

Panel D. The Term Spread

Australia 1952:1� 2004:6 1.056 0.177 NO -0.404 -0.158
Belgium 1952:1� 2004:6 0.366 0.021 NO -0.870 0.020
Canada 1952:1� 2004:6 2.467 0.960 YES 0.229 0.459
Finland 1962:1� 2004:6 1.345 0.355 NO 0.199 0.511
France 1952:1� 2004:6 1.646 0.430 YES 0.244 0.266
Germany 1953:1� 2004:6 1.780 0.512 YES 0.342 0.503
Italy 1952:1� 2004:6 1.659 0.436 YES -0.213 0.546
Japan 1952:1� 2004:6 -1.997 0.631 NO -0.599 -0.110
Netherlands 1952:1� 2004:6 1.824 0.527 YES -0.242 0.349
South Africa 1960:3� 2004:6 1.425 0.382 NO -0.753 0.476
Spain 1952:1� 2004:6 3.555 1.973 YES 1.939 1.775
Sweden 1952:1� 2004:6 -0.061 0.001 NO -0.616 -0.495
UK 1952:1� 2004:6 0.711 0.081 NO -1.176 -0.264
USA 1952:1� 2004:6 2.826 1.256 YES -0.544 0.557



Figure 1: Power Results from the Monte Carlo Study. The graphs show the average rejection rates for
a two-sided 5 percent t�test of the null hypothesis of � = 0; for samples with T = 100, and n = 20. The
x�axis shows the true value of the parameter �, and the y�axis indicates the average rejection rate. The
left-hand column gives the results for the case of exogenous regressors (� = 0), and the right-hand column
gives the results for the case of highly endogenous regressors (� = �0:95). In the top two panels, A1 and A2,
there are no common factors in the data, and the results for the t�tests corresponding to the standard �xed
e¤ects estimator, �̂FE , and the estimator based on recursive demeaning, �̂RD, are given by the long dashed
lines and the short dotted lines, respectively. In the middle panels, B1 and B2, there is a common factor
in the data but the estimators �̂FE and �̂RD that do not control for common factors, are still used. In the

bottom panels, C1 and C2, the common factor is controlled for by using the estimators �̂
+

FE and �̂
+

RD, and
the results for the corresponding t�tests are shown. The �at lines indicate the 5% rejection rate. All results
are based on 10; 000 repetitions.



Figure 2: Expanding Window Regression Estimates for the Developed Panel. The left hand graphs depict
the �xed e¤ects estimates without controlling for common factors (i.e. �̂FE), and the corresponding con�dence
bounds with a nominal coverage rate of 90% that are obtained when pooling at the developed market level all
observations available up until the year in the plot. The right hand graphs depict the corresponding results

for the recursive demeaning estimator, when also controlling for common factors (i.e. �̂
+

RD). A time-series is
added to the panel when �ve years of observations become available. The �at solid lines indicate a value of
zero.



Figure 3: Expanding Window Regression Estimates for the Short Interest Rate. Each graph depicts the
point estimate and the Campbell and Yogo 90 percent con�dence interval that result from regressing excess
returns, in the country indicated, on the lagged value of the short interest rate. The samples used in the
estimation include data up till the year shown in the graph. The �at solid lines indicate a value of zero.



Figure 4: Expanding Window Regression Estimates for the Term Spread. Each graph depicts the point
estimate and the Campbell and Yogo 90 percent con�dence interval that result from regressing excess returns,
in the country indicated, on the lagged value of the term spread. The samples used in the estimation include
data up till the year shown in the graph. The �at solid lines indicate a value of zero.


