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Abstract

We show that the general bias reducing technique of jackkni�ng can be successfully applied to stock

return predictability regressions. Compared to standard OLS estimation, the jackkni�ng procedure de-

livers virtually unbiased estimates with mean squared errors that generally dominate those of the OLS

estimates. The jackkni�ng method is very general, as well as simple to implement, and can be applied to

models with multiple predictors and overlapping observations. Unlike most previous work on inference

in predictive regressions, no speci�c assumptions regarding the data generating process for the predictors

are required. A set of Monte Carlo experiments show that the method works well in �nite samples and the

empirical section �nds that out-of-sample forecasts based on the jackknifed estimates tend to outperform

those based on the plain OLS estimates. The improved forecast ability also translates into economically

relevant welfare gains for an investor who uses the predictive regression, with jackknifed estimates, to

time the market.
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1 Introduction

Ordinary Least Squares (OLS) estimation of predictive regressions for stock returns generally results in biased

estimates. This is true in particular when valuation ratios, such as the dividend- and earnings-price ratios,

are used as predictor variables. The bias has been analyzed and discussed in numerous articles and a number

of potential solutions have been suggested (e.g., Mankiw and Shapiro, 1986, Stambaugh, 1999, and Jansson

and Moreira, 2006). However, most of the attention in the literature has been directed at constructing valid

tests in the case of a single regressor that follows an auto-regressive process, and much less attention has

been given to the problem of obtaining better estimators, both in the case of single or multiple predictor

variables.1

Although the testing problem is arguably the more fundamental issue from a strictly statistical point of

view, the estimation problem is of great interest from an economic and practical perspective. The statistical

tests answer the question whether there is predictability, but the coe¢ cient estimate speaks more directly to

the economic magnitude of the relationship. Since there is an emerging consensus in the �nance profession

that stock returns are to some extent predictable, it is of vital interest to determine the economic importance

of this predictability. In addition, if forecasting regressions are to be used for out-of-sample forecasts, which

is often their ultimate purpose, the point estimate obviously takes on the main role.

In this paper, we propose the application of a general bias reduction technique, the jackknife, to obtain

better point estimates in predictive regressions. Unlike most other methods that have been proposed, this

procedure does not assume a particular data generating process for the regressor and allows for multiple

predictor variables. The jackknifed estimator, which is based on a combination of OLS estimates for a small

number of subsamples, is also trivial to implement and could easily be used with common statistical packages.

In relation to previous work, the current paper contributes to both the emerging literature on bias-reducing

techniques in predictive regressions, such as Amihud and Hurvich (2004) and Eliasz (2005), as well as the

ongoing debate on out-of-sample predictability in stock-returns, as exempli�ed by Goyal and Welch (2003,

2007) and Campbell and Thompson (2007).

In a series of Monte Carlo experiments, we show that the jackknifed estimator can reduce the bias in the

estimates of the slope coe¢ cients in predictive regressions. This applies both to the standard one-regressor,

one-period regression as well as to the case of multiple regressors and longer forecasting horizons. Although

1The only bias corrections, in predictive regressions, that have been used to any great extent are ad hoc corrections for the
bias dervied by Stambaugh (1999), for the case of a single regressor that follows an AR (1) process. Amihud and Hurvich (2004)
provide justi�cations for similar corrections in the case of multiple regressors. Lewellen (2004) provides a �conservative� bias
correction, also based on a single AR (1) regressor, which is primarily useful as a tool for obtaining conservative test statistics,
since in general the corrected estimate will not be unbiased but, rather, underestimate the true parameter value. In fact, one of
the main reasons that testing, rather than estimation, has been the main focus is that most studies on inference in predictive
regressions resort to some conservative test, which does not deliver a unique estimation analogue; e.g., Cavanagh et al. (1995)
and Campbell and Yogo (2006).

1



the jackknifed estimates have a larger variance than the OLS estimates, the jackknifed estimates still often

outperform the OLS ones in a mean squared error sense. Thus, to the extent that it is desirable to have as

small a bias as possible, for a given mean squared error, the jackknifed estimator tends to dominate the OLS

estimator.

In the empirical section of the paper, we consider forecasting of aggregate U.S. stock returns, using

�ve di¤erent predictor variables: the dividend- and earnings-price ratios, the smoothed earnings-price ratio

suggested by Campbell and Shiller (1988), the book-to-market ratio, and the short interest rate. Although

many other stock return predictors have been proposed (see, for instance, Goyal and Welch, 2007), the above

valuation ratios are of most interest here, since they tend to result in the largest biases in the OLS estimates.

The short interest rate is also analyzed since some recent work by Ang and Bekaert (2007) suggests that it

works well as a predictor together with the dividend-price ratio, which thus provides an opportunity to study

the performance of the jackknifed estimator with multiple regressors.

The in-sample results show that the jackknifed estimates, in some cases, deviate substantially from the

OLS estimates. For instance, the magnitude of the coe¢ cient for the book-to-market ratio is often drastically

smaller when using the jackknife procedure. On average, the OLS estimates often overstate the magnitude

of predictability compared to the jackknife estimates.

In order to evaluate whether these discrepancies in the full-sample estimates actually translate into better

real time forecasting ability, we perform two di¤erent out-of-sample exercises. First, we calculate the out-of-

sample R2s for the di¤erent predictor variables, and �nd that the forecasts based on the jackknifed estimates

typically dominate those based on the OLS estimates; this is true also if one imposes some of the forecast

restrictions proposed by Campbell and Thompson (2007). In a second out-of-sample exercise, we estimate

the welfare gains to a mean-variance investor who uses either the OLS estimates or the jackknifed estimates

to form his portfolio weights in order to time the market. In this case, the jackknifed estimates produce even

clearer gains, dominating both the portfolio choices based on the OLS estimates as well as the baseline choice

based on the historical average returns. Overall, the promising results seen in the Monte Carlo simulations

carry over to the real data.

The rest of the paper is organized as follows. Section 2 outlines the jackknife procedure and provides an

explicit example of how it works in a predictive regression. Section 3 presents the results from the Monte

Carlo exercises. The empirical analysis is performed in Section 4 and Section 5 concludes.
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2 The Jackknife

Let T be the sample size available for the estimation of some parameter �. Decompose the sample into m

consecutive subsamples, each with l observations, so that T = m � l. The jackknife estimator, which was

introduced by Quenoille (1956), is given by

�̂jack =
m

m� 1 �̂T �
Pm

i=1 �̂li
m2 �m ; (1)

where �̂T and �̂li are the estimates of � based on the full sample and the ith subsample, respectively, using

some given estimation method such as OLS or maximum likelihood. In the current paper, we rely only on

OLS for obtaining �̂li. Under fairly general conditions, which ensure that the bias of �̂T and �̂li can be

expanded in powers of T�1, it can be shown that the bias of �̂jack will be of an order O
�
T�2

�
instead of

O
�
T�1

�
; Phillips and Yu (2005) provide a longer discussion on this.

Note that � may be a single parameter, or a vector of parameters, estimated from some model using any

feasible estimation method. Furthermore, � may also represent a combination, or complicated function, of

estimated parameters. For instance, Phillips and Yu (2005) show how jackkni�ng bond option prices directly,

rather than the estimated parameters that enters the bond option formula, can help reduce the bias in the

estimated option prices. The jackknife is thus a very generally applicable method. Within the context of

estimating models for stock return predictability, we consider, in addition to the standard single regressor

case, also a case with multiple regressors, as well as overlapping observations. Whereas the bias in the single

regressor case is well analyzed, less is understood about the biases in the case of multiple regressors or the

case of long-run forecasting regressions with overlapping observations. Again, in all three cases the analysis

of the bias is usually restricted to the case where the regressors follow an auto-regressive process; see, for

instance, Amihud and Hurvich (2004) for a discussion on some bias reduction methods for the case of multiple

regressors.

A simple example helps to illustrate how the jackkni�ng procedure reduces the bias in estimates. Consider

the traditional predictive regression with a single regressor which follows an AR (1) process:

rt = �+ �xt�1 + ut; (2)

xt =  + �xt�1 + vt: (3)

Suppose ut and vt are bivariate normally distributed with mean zero and covariance matrix
��
�2u; �uv

�
;
�
�uv; �

2
v

��0
;

the correlation between ut and vt is denoted by � in the simulations below. As shown in Stambaugh (1999),
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the bias in the OLS estimator of � is given by

E
h
�̂OLS � �

i
= ��uv

�2v

�
1 + 3�

T

�
+O

�
T�2

�
= O

�
T�1

�
: (4)

The jackknife estimator of � for m = 2, based on OLS estimation, is equal to

�̂jack = 2�̂T �
1

2

�
�̂T=2;1 + �̂T=2;2

�
; (5)

and

�̂jack � � = 2
�
�̂T � �

�
� 1
2

�
�̂T=2;1 � � + �̂T=2;2 � �

�
: (6)

Taking expectations on both sides and using the expression in (4), it follows that

E
h
�̂jack � �

i
= �2�uv

�2v

�
1 + 3�

T

�
+
�uv
�2v

�
1 + 3�

T=2

�
+O

 �
T

2

��2!
= O

�
T�2

�
: (7)

Thus, the bias is reduced from O
�
T�1

�
to O

�
T�2

�
.

This result would hold for any m, which raises the question of what value m should be set to in practice.

As shown by the simulations in the following section, setting m = 2 works very well and usually eliminates

almost all of the bias. However, the simulations also show that an increase in m (to 3 or 4) can reduce the

variance of the jackknife estimate without any substantial increase in the bias. In general, the root mean

squared error is smallest for m = 4 in the simulations presented below. Phillips and Yu (2005) present

results along similar lines and provide some brief theoretical arguments that support these �ndings. In a

given context, an optimal choice of m may therefore exist, although there appears to be no studies on how

to choose this optimal m. The empirical section, which presents results for m = 2; 3, and 4, suggests that

m = 3 may be the best choice on average, although the di¤erences are generally not great between the three

alternatives, and there appears to be no choice of m that strictly dominates empirically.

3 Monte Carlo Simulations

We analyze the �nite sample performance of the jackknife method by simulating data from the model de�ned

by equations (2) and (3). The assumption that the predictor variable follows an AR (1) process is probably

the most common one in the analysis of stock-return predictability. This stems primarily from the relative

ease with which the properties of estimators of � can be analyzed in this setup, and because the model

captures the most salient features of typical forecasting variables such as valuation ratios and interest rates.
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The results from the AR (1) speci�cation should also be qualitatively similar to those from a more general

AR (p) model. In general, the jackknife procedure should help reduce bias in other setups as well, but we

focus on its properties for this familiar model which is easy to parametrize in a realistic manner, such that

the OLS estimator will be biased in �nite samples. In addition to considering the case with a single regressor,

we also simulate from a model with two forecasting variables, where each of these follows an AR (1) process

as speci�ed in detail below. Finally, we also consider the case when forecasts are formed at a horizon di¤erent

from that at which the data were sampled.

3.1 The single regressor case

Equations (2) and (3) are simulated for the case when xt is a scalar. The innovation terms ut and vt are drawn

from a multivariate normal distribution with unit variances. The correlation between ut and vt, denoted �,

takes on three di¤erent values: �0:9;�0:95; and �0:99. The auto-regressive root � is set equal to either

0:9; 0:95, or 0:999. The sample size, T , is equal to 100 or 500 observations. The parameters �; �; and  are

all set to zero, although an intercept is still estimated in the predictive regression; since the bias in the OLS

estimator is not a function of the values of these parameters (e.g. Stambaugh, 1999), this standardization

does not a¤ect the results. Campbell and Yogo (2006) show that values such as these for � and � are often

encountered empirically, when using valuation ratios as predictors.

Note that, if � = 0, so that the error terms ut and vt are uncorrelated, the OLS estimator is unbiased

and equal to the full information maximum likelihood estimator. Furthermore, for � close to zero, the OLS

estimator will also be unbiased, even when � 6= 0. In general, the bias for the OLS estimator is thus greater

as � gets closer to unity, and the closer the absolute value of � is to one. We therefore restrict the analysis to

the part of the parameter space where there actually is a bias to correct in the OLS estimator. Results for

� < 0 are shown since this is the empirically most relevant case and the case of � > 0 is completely analogous.

The Monte Carlo simulation is conducted by generating 10; 000 sample paths from equations (2) and

(3), for each combination of parameter values. From each set of generated returns and regressors, the OLS

estimate of � and the jackknife estimates for m = 2; 3; and 4, are calculated. The average bias and root-

mean-squared errors (RMSE) for these estimators are then calculated across the 10; 000 samples. The results

are reported in Table 1, which shows the bias and the RMSE in parentheses below, for each parameter

combination.

An inspection of the results in Table 1 quickly reveals three distinct �ndings: (i) the OLS estimates are

upward biased for all of the parameter combinations under consideration, (ii) the jackknife estimates are

virtually unbiased in all cases, and (iii) the RMSEs for the jackknife estimates are always less than or equal
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to the RMSE for the OLS estimates for m = 3 and 4, and fairly similar to the RMSE for the OLS estimates

for m = 2. These simulation results thus suggest that the jackkni�ng procedure reduces the bias without

inducing enough variance to in�ate the RMSE.

Figure 1 provides some additional insights into the workings of the jackknifed estimator. It shows density

plots for the OLS estimator as well as the jackknife estimators form = 2; 3; and 4. The densities are estimated

with kernel methods from 100; 000 samples, with T = 100, � = 0:999 and � = �0:99. The density of the

OLS estimate is almost completely to the right of the true value for �, and is also highly skewed towards the

right. The jackknifed estimates are both more centered around the true value as well as more symmetric.

For m = 2, the jackknife estimator has a distribution that is centered almost exactly at the true value and is

also fairly symmetric. For m = 3 and 4, the densities are more peaked, re�ecting the lower RMSEs shown in

Table 1, but also slightly less centered at the true value; these densities are also somewhat more skewed. As

mentioned in the previous section, these results indicate that there is a trade o¤ between bias and variance

in the choice of m, and an optimal choice of m in terms of RMSE may therefore exist. However, no formal

results along these lines appear to be available.

In order to understand the magnitude of the bias in the OLS estimator, and the importance of the bias

reduction achieved with the jackknife estimators, it is useful to consider typical values of the estimates of �

in actual data. The results in Campbell and Yogo (2006) are particularly convenient for such a comparison

since they present their estimates in a standardized manner conforming with the model simulated here; that

is, they scale the estimate of � to correspond to a model with unit variance in ut and vt. Campbell and Yogo

(2006) consider stock return predictability for aggregate U.S. stock returns. They show that OLS estimates

of � are typically in the range of 0:1 to 0:2 in annual data and most often in the range of 0:01 to 0:02 in

monthly data. Thus, if one uses 100 years of annual data, the bias in the OLS estimate may be between 20

and 50 percent of the actual parameter value, as seen from the results in Table 1. If one relies on a shorter

(in years covered) monthly series with 500 observations, the bias could easily be as large as the parameter

value itself. In proportion to the size of the parameter value, the bias reduction in the jackkni�ng procedure

is therefore at least substantial and potentially huge.

3.2 Multiple regressors

Although the simple forecasting regression with just one predictor is by far the most studied and commonly

used in the literature, there are instances when the use of several forecasting variables may be advantageous.

For instance, Ang and Beekaert (2007) argue that the dividend-price ratio works much better as a predictor

when used jointly with the short rate, rather than on its own.
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In order to evaluate the properties of the jackknife estimator in the multiple regressor case, we restrict

the attention to the case with two forecasting variables and follow a similar setup to the one used in the

single regressor case. In particular, it is assumed that the data is generated by a multivariate version of the

model described by equations (2) and (3). The auto-regressive matrix for the two predictor variables is set

to A = [(a11; 0) ; (0; a22)]
0 and the innovations ut and vt = (v1t; v2t) are again normally distributed with unit

variance. The correlation vector between ut and vt is labeled !uv and the correlation between v1t and v2t is

labeled �, such that the variance-covariance matrix for vt is equal to 
vv = [(1; �) ; (�; 1)]
0. Table 2 shows the

results for the estimates of the two coe¢ cients, �1 and �2, that correspond to the �rst and second predictor

variable, for various values of A and di¤erent correlations between the innovations. Results for T = 100 and

T = 500 are presented and the results are based on 10; 000 repetitions.

The �rst two columns of results in Table 2 represent perhaps the most empirically interesting case. For

these results, a11 = 0:999, a22 = 0:95, !uv = (�0:9; 0)0 and � = 0:4. That is, the �rst predictor is the most

persistent one and is also highly endogenous, whereas the second predictor is exogenous and less persistent.

This setup corresponds fairly well to the case with the dividend-price ratio and the short interest rate as

predictors, since the dividend-price ratio is highly endogenous whereas the short rate is nearly exogenous, and

usually somewhat less persistent than the dividend-price ratio (Campbell and Yogo, 2006). The correlation

of 0:4 between the innovations to the two regressors results in an average correlation of around 0:25 between

the levels of the regressors, which is similar to the empirical correlation between the dividend-price ratio and

the short interest rate observed in the data used in this paper.2

Intuitively, given the results for the single regressor case, one would expect the OLS estimate for the

coe¢ cient for the �rst regressor (�1) to be highly biased whereas the second estimate (�2) should perform

better, since it is only indirectly a¤ected by the endogenity bias through the correlation of the two regressors.

This intuition is bourne out to some extent by the simulation results, which show a large bias for the �rst

predictor but a smaller, although still substantial, bias for the second. The jackknife works very well for

�1, resulting in almost unbiased estimates with only a small increase in RMSE for m = 2 and a signi�cant

reduction in RMSE for m = 3; and 4. Jackkni�ng the estimates for �2 also results in unbiased estimates, but

with a slight increase in RMSE, particularly for T = 100.

The following two sets of results in Table 2 represent cases where both regressors are endogenous. In order

for the overall covariance matrix between ut and vt to be well de�ned, this forces v1t and v2t to be fairly highly

correlated as well. In particular, !uv = (�0:7;�0:7)0 and � = 0:5 in the �rst case and !uv = (�0:9;�0:9)0

2The case when the regressors are completely orthogonal to each other is obviously most desirable in empirical speci�cations,
although it is not often likely to hold. In that case, however, there will be little to no di¤erence between the individual coe¢ cient
estimates from separate regressions on each regressor and the estimates obtained from a multiple regression. Thus, there is little
point in analyzing this case, since it would merely con�rm the results obtained in the previous section.
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and � = 0:8 in the second case. The peristence parameters are set to a11 = 0:999 and a22 = 0:95 in the

�rst speci�cation, and to a11 = a22 = 0:999 in the second one. Thus, both variables are highly endogenous

and highly co-linear. In the �rst speci�cation, the �rst predictor is more persistent than the other, whereas

in the latter speci�cation both have the same persistence. These parametrizations could correspond to, for

instance, various combinations of valuation ratios, which may have somewhat di¤erent degrees of persistence

and endogeneity, and may also have di¤erent correlations with each other.

As seen in Table 2, both of these parametrizations result in OLS estimates that are biased, both for �1

and �2. The jackkni�ng reduces the bias substantially, although there is a little bias left in the jackknifed

estimates when using the �rst parameter speci�cation for T = 100, as seen in the middle columns of Table

2. For m = 3 and 4, the RMSE for the jackknifed estimates are similar to the OLS ones. The second

speci�cation, shown in the last two columns of Table 2, is symmetric for the two regressors and the OLS

biases for the two coe¢ cients are virtually identical. For T = 100; the jackknifed estimates are now virtually

unbiased, with only a small increase in the RMSE relative to the OLS estimates. For T = 500, the bias is

completely removed by the jackkni�ng.

In summary, the jackknife appears to work well in the multivariate case and generally results in virtually

unbiased estimates. Given the multitude of possible parameter combinations that arise as soon as one leaves

the simplicity of the single regressor case, the results presented in this section are far from exhaustive but

hopefully capture some of the more salient features of biases in multivariate regressions.

3.3 Overlapping observations

Finally, we consider the performance of the jackknife estimator for predictive regression with overlapping ob-

servations. Inference with overlapping observations is a topic that has a long history in the �nance literature,

but most of the e¤ort has been directed at constructing valid test statistics rather than reducing the bias

in OLS estimates.3 The jackknife procedure provides a simple but �exible way of addressing the estimation

problem.

To keep things tractable, the single regressor case is analyzed. The data is generated in exactly the same

manner as described in Section 3.1, generating sample paths from equations (2) and (3). However, instead

of estimating equation (2), the sums of future q�period returns are now regressed on the value of xt. The

forecasting horizon q is set equal to 10 for T = 100 and equal to 12 for T = 500. These two cases capture

common applications of long-run forecasts using a century of annual data and annual forecasts based on

monthly data.

3See, for instance, Hansen and Hodrick (1980), Richardson and Stock (1989), Richardson and Smith (1991), Goetzman and
Jorion (1993), Campbell (2001), Valkanov (2003), Torous et al. (2004), and Boudoukh et al. (2006). Nelson and Kim (1993)
brie�y discuss the magnitude of the Stambaugh (1999) bias in regressions with overlapping observations.
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The results are shown in Table 3. The bias in the OLS estimates is of an order of magnitude larger than

the ones shown in Table 1. This is entirely in line with the analytical results of Bodoukh et al. (2006), who

show that one should expect the estimate, and hence the bias, to increase almost linearly with the forecasting

horizon. The jackkni�ng reduces the bias substantially in all cases, although not always completely. The

RMSEs for the jackknifed estimates is slightly larger than those for the OLS estimates in some cases, although

there are also substantial reductions for some parameter combinations.

It is evident that the jackknife is also applicable in long-horizon regressions. From the results presented

here, it appears to be most useful when the overlap is not too large relative to the number of observations; the

results for q = 12 and T = 500 are generally stronger than those for q = 10 and T = 100. Overall, however,

the results are very promising and the jackknife clearly presents a simple way of alleviating estimation biases

in long-horizon regressions, an issue which is often ignored in applied work.

4 Empirical Analysis

We next apply the jackknife method to real stock market data. Since the purpose of the jackknife method is

to obtain better point estimates, we primarily evaluate its usefulness by an out-of-sample (OOS) forecasting

exercise. However, it is also of interest to analyze the full sample point estimates, since they directly show

the di¤erences between the plain OLS estimates and the bias corrected jackknifed estimates.

As the dependent variable, we use monthly total excess returns on the S&P 500 index, starting in February

1872 and ending December 2005. Five separate forecasting variables are used: the dividend- and earnings-

price ratios (D/P and E/P), the smoothed earnings-price ratio of Campbell and Shiller (1988), the book-

to-market ratio (B/M), and the short term interest rate as measured by the three-month T-Bill rate. The

smoothed earnings-price ratio is de�ned as the ratio of the 10-year moving average of real earnings to the

current real price. Although many other stock return predictors have been proposed (see, for instance, Goyal

and Welch, 2007), the above valuation ratios are of most interest here since they tend to result in the largest

biases in the OLS estimates (e.g. Campbell and Yogo, 2006). The short interest rate is also analyzed,

since recent work by Ang and Bekaert (2007) suggests that it works well as a predictor together with the

dividend-price ratio, which provides an opportunity to study the performance of the jackknifed estimator

with multiple regressors; the short interest rate is generally negatively related to future stock returns, and we

therefore �ip the sign on this predictor variable in all regressions so that the expected sign is always positive.

All data are recorded on a monthly basis and regressions are run either at this monthly frequency or at an

annual frequency, using overlapping observations based on the original monthly data. The annual results thus

provide an illustration of the jackknifed procedures applied to regressions with overlapping observations. In
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all cases, excess stock returns are regressed on the lagged predictor variable(s) and an intercept, following

the basic structure of equation (2).

These are a subset of the same data as those used by Campbell and Thompson (2007) in their study of

out-of-sample return predictability.4 The jackknifed OOS predictions can thus be directly compared to their

results. In line with Campbell and Thompson, we use the level, and not logs, of the predictor variables as

well as simple rather than log-returns.

4.1 In-sample results

The �rst set of empirical results is given in Table 4 and shows the full sample OLS estimates, t�statistics and

R2, along with the jackknifed estimates; the t�statistics for the annual data with overlapping observations

are formed using Newey and West (1987) standard errors. Results for the monthly and annual frequencies are

displayed, and two di¤erent sample periods are considered: the longest available sample for each predictor

variable, as well as the forecast period used in the out-of-sample forecasts below.

As is well established, predictive regressions like these tend to generate signi�cant t�statistics but fairly

small R2, which increase with the horizon. Inference based on the t�statistics is generally subject to pitfalls,

as documented in, for instance, Stambaugh (1999) and Campbell and Yogo (2006), and they are primarily

shown here for completeness. The focus in this paper is on the point estimates in the predictive regression,

which are also shown in Table 4. Four sets of estimates are shown: the standard OLS ones and the jackknifed

ones using m = 2; 3; and 4 subsamples. Within the standard stock return predictability model, where the

regressors follow an auto-regressive process, the OLS estimates for the valuation ratios are generally upward

biased, whereas for the short interest rate the OLS estimator should be nearly unbiased. This suggests that

the jackknifed estimates, which attempt to correct the OLS bias, should generally be smaller than the OLS

estimates. Overall, this is the case, especially when using m > 2. This is particularly true for the book-to-

market ratio in the shorter sample, and for the coe¢ cient on the dividend-price ratio in the regressions that

include the dividend-price ratio and the short rate jointly. The jackknifed estimates using m = 2 are often

close to the OLS estimates, although they sometimes deviate substantially as well. Qualitatively, the results

are similar for the monthly and annual data.

The results in Table 4 suggests that standard OLS estimates are likely to exaggerate the size of the slope

coe¢ cient in these predictive regressions. However, from these full sample estimates alone, it is di¢ cult to

tell whether the jackknifed estimates are actually more accurate than the OLS estimates and we therefore

turn to out-of-sample exercises to evaluate this question.

4The data were obtained from Professor John Campbell�s website and are described in more detail in Campbell and Thompson
(2007).
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4.2 Out-of-sample results

In order to evaluate the OOS performance of the jackknifed estimates, we calculate an OOS R2, de�ned as

R2OS = 1�
PT

t=s (rt � r̂t)
2PT

t=s (rt � �rt)
2
; (8)

where r̂t is the �tted value from a predictive regression estimated using data up till time t� 1 and �rt is the

historical average return estimated using all available data up till time t � 1. The out-of-sample forecasts

begin in 1927, at which point high quality monthly CRSP data becomes available, or 20 years after the

�rst available observation for a given predictor variable, whichever comes later. Thus, s, in equation (8),

represents the length of this initial �training-sample�, which is used to obtain the estimates on which the �rst

round of forecasts is based. Note that the historical average forecast, �rt, is always based on all the data back

to 1872, which preserves its real world advantage. The R2OS statistic is positive when the conditional forecast

based on the predictive regression outperforms the historical mean. Thus, the out-of-sample R2 is positive

when the root mean squared error of the conditional forecast is less than that of the historical mean forecast.

Given that the out-of-sample R2 and a comparison of the root mean squared errors yield identical qualitative

results, we focus on the out-of-sample R2 since it is measured in comparable units to the in-sample R2 and

thus allows for more direct comparison.

In addition to the standard forecasts based on the predictive regression and the historical mean, we also

analyze the e¤ects of imposing some of the forecast restrictions proposed by Campbell and Thompson (2007).

That is, Campbell and Thompson argue that rather than mechanically forecasting stock returns based on the

estimated forecasting equation, it is reasonable to impose the following restrictions: if an estimated coe¢ cient

does not have the expected sign, it is set equal to zero, and if the forecast of the equity premium is negative,

the forecast is set equal to zero. These restrictions rule out some of the perverse results that can otherwise

occur in the rolling regressions that are used in the out-of-sample forecasts.5

Table 5 shows the OOS R2s for the OLS estimator and the jackknifed estimator with m = 2; 3; and 4, for

both the restricted forecasts, which impose the Campbell and Thompson restrictions, and the unrestricted

ones. For each predictor, the highest OOS R2 is shown in bold type. In general, the results show that the

forecasts based on the jackknifed estimates tend to outperform the ones based on the plain OLS estimates,

although there is no given value of m that consistently produces the highest OOS R2. The jackkni�ng

5One could consider various ways of implementing the restrictions on the jackknife estimates. Here we take the simplest
approach and set the parameter estimate equal to zero if it has the wrong sign. Alternatively, one could restrict the individual
sub-sample estimates in the jackknife estimator to have the right sign. Since the �rst approach immediately generalizes to the
case of multiple regressors, unlike the second one which would become complicated to implement for more than one regressor,
we use the �rst approach. In all cases, the intercepts are calculated to line up with the, potentially restricted, slope coe¢ cient
such that the residuals have mean zero. In the regressions with two predictor variables, each coe¢ cient is restricted separately
and the intercept is again estimated to produce zero mean residuals.
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procedure appears to be somewhat more useful on the monthly, rather than the annual data, in line with the

simulation results above, although the results are somewhat mixed. Qualitatively, the results are similar for

both the unrestricted and restricted forecasts. As might be expected from the full-sample coe¢ cient estimates

in Table 4, where the full-sample jackknifed estimates were drastically di¤erent from the OLS estimate, the

advantages of the jackkni�ng are particularly clear for the book-to-market ratio.

With regards to the choice of m, there is no value that clearly produces the best results. However,

using m = 3 in the restricted forecasts consistently dominates the OLS forecasts in the monthly data and

is close to, or better, in the annual data; only for the smoothed earnings price ratio in the annual data is

there a material di¤erence in favor of the OLS forecasts. In the unrestricted case, there is no m for which

the jackknifed estimates consistently dominate the OLS ones for all predictor variables. This is clearly a

drawback, since, as mentioned before, there are no clear guidelines for choosing m. However, as shown in the

section below, the results become clearer when one considers the implementation of actual portfolio strategies.

In summary, the jackknifed estimator often improves upon the OLS estimator in out-of-sample forecasts.

This seems to be particularly true when one also imposes the forecast restrictions proposed by Campbell and

Thompson (2007), in which case the jackknifed estimator with m = 3 almost completely dominates the OLS

estimator.

4.3 Portfolio strategies

Campbell and Thompson (2007) discuss how the OOS R2 can be translated into gains in economic terms for an

investor that attempts to time the market using these predictor variables. However, practical considerations

such as short selling constraints may render such theoretical relationships less accurate; a more reliable

approach to gauging the economic importance of the improvement in out-of-sample forecasts is to directly

simulate a portfolio choice strategy. To keep the calculations tractable, consider an investor with a single-

period investment horizon and mean-variance preferences; that is, in each period the investor myopically

chooses the optimal portfolio based on his quadratic preferences. The investor�s utility function is the

expected excess return minus (=2) times the portfolio variance, where  can be viewed as the coe¢ cient of

relative risk aversion. The weight on the risky asset for this investor is given by

�t =

�
1



��
Et [rt+1]

V art (rt+1)

�
; (9)

where Et [rt+1] and V art (rt+1) represents the expected value and variance of the excess returns over the

next period, conditional on the information at time t. If the investor does not use the predictive regression

12



(2), it follows that

�t = � =

�
1



��
�

�2�2x + �
2
u

�
; (10)

where �2x = V ar (xt) and �
2
u = V ar (ut). If the investor does use regression (2),

�t =

�
1



��
�+ �xt
�2u

�
: (11)

The out-of-sample economic gains of the predictive ability of equation (2) are evaluated by comparing the

utilities from an investor who uses the weights in (11) to one who disregards the predictability in returns and

uses the weights in (10).

The weights �t are calculated using only information available at time t. When the predictive regression

is not used, the weights at each time t are estimated by

��t =

�
1



��
�rt
��2r

�
; (12)

where �rt is the historical average return estimated using all available data up till time t and ��2r is the variance

of returns estimated using a �ve year rolling window of data; i.e. ��2r is estimated using the last �ve years of

data before time t. The weights based on the predictive regression are given by

�̂t =

�
1



� 
�̂+ �̂xt

�̂2u

!
; (13)

where �̂ and �̂ are the estimates of the intercept and slope coe¢ cient in the predictive regression, using the

data up till time t, and �̂2u is the variance of the residuals, again estimated using a �ve year rolling window of

data.6 In order for the portfolio weights to be compatible with real world constraints, we impose a no short

selling restriction and a maximum of 50% leverage, so that the portfolio weights are restricted to lie between

0 and 150%. Finally, the risk aversion parameter  is set equal to three.

Table 6 reports the welfare bene�ts from using the weights �̂t, using either the OLS estimator or the

jackknifed estimators, instead of the weights ��t. The utility di¤erences are expressed in terms of expected

annualized returns and can thus be interpreted as the (maximum) management fee that an investor would

be willing to pay a portfolio manager that exploits the predictive ability of equation (2). As in Table 5,

we consider both the forecasts that impose the Campbell and Thompson restrictions and those that do not.

Qualitatively, the results in Table 6 tell the same story as those in Table 5. The portfolio strategies based

6The use of a �ve-year window to estimate the variance of the (unexpected) returns conforms with the approach taken by
Campbell and Thompson (2007). It can be justi�ed by the fact that it is easier to calculate the variance of returns, as opposed
to the expected value, over shorter time horizons, and there is a large literature that shows that variances change over time.
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on the jackknifed estimates tend to outperform those based on the OLS estimates, and, importantly, o¤er

welfare gains over the strategies based purely on historical average returns. Again, the jackknifed estimator

appears to work best for the monthly data.

The portfolio results in Table 6 provides even stronger support of the bene�t of the jackknifed estimates

than the OOS R2s reported in Table 5. In the monthly data, the results for the OLS portfolio weights are

dominated by the jackknife weights, for any m, in almost all cases. This is true both for the restricted and

unrestricted forecasts. If one were to choose a single m for all predictors, m = 3 would appear to be the best

choice; in the monthly data, it dominates the OLS results in all cases.

Compared to the OLS weights, the utility gains from using the jackknife procedure are relatively large,

often between 50 and 100 basis points. Although this may not sound that large in absolute terms, the gains

from using the predictive regression (with OLS estimates) in the �rst place, instead of the historical average

return, are typically no larger than 50-60 basis points. In fact, the welfare gains from the OLS weights are

quite often negative, whereas the jackknife weights, especially for m = 3, are almost always positive. The

welfare gains from the jackknife weights are also similar to those reported by Campbell and Thompson (2007)

based on their completely restricted forecasts where the coe¢ cient in the predictive regression is totally pinned

down by theoretical arguments and not estimated at all. The results here thus suggest that improving the

estimation procedures can lead to at least as big an improvement as the imposition of theoretical constraints.

These result also add further evidence to the case that returns are predictable out-of-sample, in contrast to

the conclusions of Goyal and Welch (2003, 2007).

5 Conclusion

A simple bias reducing method, the jackknife, is proposed for predictive regressions of stock returns. Unlike

most previous work on inference in stock return predictability regressions, this paper puts the focus on

obtaining good point estimates rather than correctly sized tests, a task which has become increasingly more

important as the focus in the literature has shifted towards out-of-sample forecasts and practical portfolio

choice based on return forecasts. In addition, the jackknife is a general method that does not rely on speci�c

assumptions on the data generating process.

Monte Carlo simulations show that the jackknife method works well in �nite samples and virtually elim-

inates the bias in OLS estimates of predictive regressions. Most importantly, it also works well on actual

stock returns data, and leads to substantial improvements in out-of-sample forecasts. This is illustrated not

only by purely statistical measures such as out-of-sample R2, but also through simulated portfolio strategies,

which often perform signi�cantly better when the forecasts are based on the jackknifed estimates rather than

14



the OLS ones.
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Figure 1: Density plots for the OLS and jackknife estimates, based on 100,000 simulations for T = 100,
� = 0:999 and � = �0:99. The graphs shows the kernel density estimates of the bias in the OLS and
jackknifed estimates, with m = 2; 3; and 4. The vertical solid line indicates a zero bias.

24


