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Abstract

Reasoning about a distributed system that exhibits a combination of probabilistic and temporal
behaviour does not seem to be easy with current techniques. The reason is the interaction
between probability and abstraction, made worse by remote synchronisation. In this paper
the recently proposed language ptsc (for probability, time and shared-variable concurrency)
is extended by constructs for interleaving and local block. Both enhance a designer’s ability
to modularise a design; the latter also permits a design to be compared with its more abstract
specification, by concealing appropriately chosen design variables. Laws of the extended language
are studied and applied in a case study consisting of a faulty register-transfer-level design.
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Introduction 1

1 Introduction

Probabilistic programs afford one means of both efficiency and elegance. In a situation where
error can be tolerated (and in many probabilistic programs the error can be decreased at the
expense of longer execution time — like further iterations of a loop) then there may exist a prob-
abilistic program that is far more efficient than the best non-probabilistic programs. Primality
testing was the original example, but there are now very many more [20]. For elegance: in some
situations there may be a symmetrical efficient probabilistic program where no non-probabilistic
symmetrical program exists. Arbitration is an example. But perhaps most important of all:
probabilistic programs provide a way of modelling, reasoning about and simulating, faulty sys-
tems.

There is a highly satisfactory theory of sequential probabilistic programs in the Dijkstra style,
due largely to McIver and Morgan [13] but built on work of Clare Jones [10] and Kozen [12].
However for distributed systems it seems that little satisfactory progress has been made. The
interaction between (demonic) nondeterminism and probabilism seems more intricate there be-
cause of the scope for demonic behaviour.

Current approaches to probabilistic distributed systems reflect the twin approaches to the theory
of general distributed systems theory: namely process algebra and shared-variable concurrency.
The former theory has been shaped by CSP [7, 25], CCS [15] and ACP [2]. The latter forms the
basis for the memory models of programming languages (for example the Java memory model
[14]) and for reasoning about hardware (for example Verilog [1, 6]).

Both are well developed but in slightly different directions. Process algebra offers hierarchies of
semantic models and complete families of sound laws. However the incorporation of probability
there exhibits unsatisfactory features [18]; the incorporation of time is intricate (see the survey
by Ouaknine and Schneider [21]); and the two together is problematic. For shared-variable
concurrency, on the other hand, much effort has been spent on formalisms for reasoning (for a
thorough summary see the text by de Roever et al. [24]) and less on semantic models. Indeed,
since each program has access to the variables of all the other programs, there is scope for
mayhem (as unprincipled as unstructured low-level programming). Important methods have
been proposed by Owicki and Gries (non-interference [22]), Cliff Jones (rely and guarantee
[11]), Misra and Chandy (assumption and commitment [16]), Brookes [3] and de Roever et al.
(temporal orderings [24]). The variety of methods attests to the subtlety of the problem.

In this paper we consider shared-variable concurrency, and build on the recent model of Zhu,
Qin, He and Bowen [26]. They propose a language, ptsc, containing probability, time and
shared-variable concurrency. Since concurrency is achieved by the interleaving of atomic events,
rather than by synchronisation or message passing as in process algebra, it is important to
decide in any such model how various threads interact: at which points a thread can be in-
terspersed by another. In [26] that is achieved by a structured operational semantics [23] with
four kinds of transition (corresponding to the progress of an atomic action, time, resolution of
nondeterminism, and the triggering of a guarded action). Bisimulation is then used to establish
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Language ptsc 2

laws. However there the authors did not consider any probability-free operator for combining
programs in parallel, of the kind one would expect to use in modularising a system using parallel
components. Nor did they consider local block, of use for controlling the scope of variables in
interleaving programs and for enabling a low-level program to be compared, after concealing
variables appropriately, with a higher-level specification.

In this paper we add interleaving and local block to ptsc. We choose to present laws without
providing an operational semantics (though in fact some of the laws have been confirmed by
bisimulation from a structured operational semantics). That is no deficiency because laws also
document the manner in which one program can intersperse another. In other words, the
computational intuition so often used to justify an operational semantics is equally evident in
the laws. And an operational model anyway provides no guarantee of consistency of the laws it
posits, in the way that a denotational model does.

We attempt to avoid the difficult problem of reasoning about shared-variable concurrency by
using the laws to reason algebraically. A register-transfer-level program is offered as an example,
first to test the expressive power of our extension to ptsc and secondly to explore how laws
might be used to establish that an implementation with probabilistic behaviour conforms to its
probabilistic specification.

In the next section, Section 2, we give an outline of ptsc. We use slightly different syntax from
the original [26] in order to conform to what might be called the Dutch style, that is beneficial
for calculation; for example the expression (+ n ∈ N : even(n) : xn) represents the summation
∑

n∈2N
xn. Section 3 introduces interleaving, Section 4 introduces local block and Section 5

presents the case study. In concluding we propose further work.

2 Language ptsc

The language ptsc is based on Dikstra’s guarded-command language [5], as reflected in the first
six constructs of Figure 1. Command abort is of course present as do true → skip od, but
we follow the authors of [26] and leave it implicit since our concerns here do not address it. On
the other hand skip, which could equally well have been left implicit as x := x, is required here.

A guarded assignment, (@i ∈ I : bi : xi := ei
o
9 Pi), assumes an index set I, predicates bi on

state space (that need be neither exhaustive nor pairwise disjoint) and a program with a leading
assignment of expression ei to variable xi and body Pi (which may of course be skip). If a guard
holds the subsequent program may be scheduled for execution (so nondeterminism arises from
overlapping guards); but otherwise the guarded assignment lets time advance. Execution cannot
be interspersed between evaluation of the guard and execution of the leading assignment, but
of course can be after execution of that assignment. We allow several guarded assignments to
be combined with the @ combinator. For example this program waits until either the value of
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Language ptsc 3

inaction skip

assignment x := e
conditional P � b � Q

iteration do b → P od

sequential composition P o
9 Q

demonic nondeterminism P ⊓ Q
guarded assignment (@i ∈ I : bi : xi := ei

o
9 Pi)

delay #n
binary probabilistic choice P r⊕ Q

probabilistic parallel P r‖Q
interleaving P 9 Q
local block x|[ x :X ◦ P ]|x

Figure 1: The language ptsc augmented by constructs for interleaving and local block (with
mild notational variations on the syntax of [26]). We also exploit recursion and mutual recursion
when convenient in defining programs.

a is 2 or that of b is 1 and then performs the corresponding assignment.

(@ : a = 2 : x := 0) @ (@ : b = 1 : y := 3)

A delay, #n, (for n : N) lets time advance n steps before it terminates. By using sequential
composition a delay-guarded program is defined

#n P := #n o
9 P

Evidently it can also be constructed from #1 and P .

A binary probabilistic choice, P r⊕Q, selects program P with probability r, and program Q with
probability 1 − r. The expression r is assumed to be a function of state with values in the real
unit interval [0, 1]. For convenience, we write 1 − r as r. The program cannot be interrupted
between evaluation of r and execution of the first atomic event of the selected component.

A probabilistic parallel composition, P r‖Q , interleaves (any) initial atomic actions of P and Q
with probabilities r and r respectively. If the initial atomic events are offered as a probabilistic
choice, the resulting probabilities of their being offered for scheduling represent their conditional
probabilities.

To deal with multi-way probabilistic choices we adopt the notation (⊕i ∈ I : pi : Pi) in which
the probabilities sum to 1: (+i ∈ I :: pi) = 1. The binary probabilistic choice P0 r⊕ P1 may be
expressed in that notation with index set I := {0, 1} and probabilities p0 := r, p1 := r.

The language ptsc is enriched with a guarded choice as follows. Components with leading assign-
ments may be expressed as guarded assignments and combined with (multi-way) probabilistic
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Language ptsc 4

choice. In the program

8i∈I{[pi] choicej∈Ji
(bij&(xij := eij) Pij)}

from [26] it is assumed that for each i : I the predicates bij partition unity (i.e. are exhaustive
(∀i : I :: ∃j : Ji · bij) and pairwise disjoint (∀i : I · ∀j, j′ : Ji : j 6= j′ : ¬(bij ∧ bij′)) and
the probabilities sum to 1. Thus in any state, for each i ∈ I, exactly one of the bij holds (for
j ∈ Ii); between the i ∈ I, program xij := eij

o
9 Pij is chosen for (potential) scheduling with

probability pi. In our notation that guarded choice is expressed as a combination of probabilism
and guarded assignment

(⊕i ∈ I : pi : (@j ∈ Ji : bij : xij := eij
o
9 Pij)) .

No action can intersperse between evaluation of the probability, the guard and completion of
the leading assignment.

Guarded choices are not combined indiscriminately. For example since the guards in a guarded
choice are exhaustive, the passage of time (initially) plays no part in it, and there is no point in
combining it with a delay. However if a guarded choice is combined with a guarded assignment
(the disjunction of whose guards, it will be recalled, need not be exhaustive), the latter has
priority; so only outside the disjunction of the guards of the guarded assignment does the
guarded choice apply. Similarly a choice between a delay and a guarded assignment attaches
priority to the guarded assignment.

In the presence of probabilistic behaviour, programs are regarded as the same if their behaviours
are the same to within unit probability (rather than ‘absolutely’). For example a random walk on
the integers with equal probability of incrementing and decrementing its value n has probability
1 of returning to the origin, although there is an execution that increments forever. So a loop
with guard n 6= 0 and body that increments and decrements n with equal probability, is for us
the same as the assignment n := 0.

As a result, a conditional is a special case of a probabilistic choice. Indeed for predicate b on
state space,

P � b � Q = P [b]⊕ Q

where [b] is the function on state space with value 1 if b and 0 if ¬b. So laws for conditional may
be inferred from those for probabilism.

In a shared-variable program, each component program can in principle read and write-to all
variables. However in practice that is seldom necessary. Practical designs exploit severe modu-
larisation in which component programs access variables selectively. We write vars(P ) for the
set of variables that program P accesses (either reads or writes-to).

For example here is a ptsc program C (similar to one that will arise in Section 5). vars(C) =
{a, b, c, d, e} where all variables are of type N except e which is Boolean. After updating variable
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Interleaving 5

a, the program enters a loop in which it waits for variables b and c to be 0. When they are,
it reads the value of variable Boolean e; if high, it updates b and c with equal likelihood and
iterates; if low, it updates d and returns to the start of C.

C := a := 2 o
9

do true →
(@ : (b = 0 ∧ c = 0) : ((b := 2 1

2
⊕ c := 1) � e � (d := 1 o

9 C)))

od

The last two lines of Figure 1 introduce the constructs added here to ptsc. They are introduced
as follows.

3 Interleaving

Programs that communicate via shared variables execute in parallel, interleaving their atomic
actions. The laws for interleaving, 9, make precise the points in a program at which another
may intersperse its own atomic actions. That idea goes back, as with so much, to a paper of
Dikjstra, in this case [4] in which he exploited concurrency with parbegin, parend blocks.

If x := e and y := f are atomic assignments to distinct variables then their concurrent execution
must achieve one before the other, yet the order is not determined

x := e 9 y := f = (x := e o
9 y := f) ⊓ (x := e o

9 y := f) . (1)

Evidently the result depends, in general, on the order (since an updated value of one variable
may be used in the other expression). This situation is thus usually to be avoided (even if
x = y). By comparison the multiple assignment,

x, y := e, f ,

evaluates the two assignments atomically, concurrently, and without interference between the
expressions (by taking a copy of each of x and y, for use in evaluating the expressions, just
before the assignments begin it can be ensured that the initial and final values are related thus:
x = e[x0, y0/x, y] ∧ y = f [x0, y0/x, y]).

The appropriate law for interleaving is

(x := e o
9 P ) 9 (y := f o

9 Q) = x := e o
9 (P 9 (y := f o

9 Q))

⊓

y := f o
9 ((x := e o

9 P ) 9 Q) . (2)
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Interleaving 6

The interleaving of a program P with inaction consists just of the actions of P .

skip 9 P = P (3)

Interleaving attributes no importance to the order of its component programs (it is commutative)
nor to the order in which more than two are combined (it is associative).

P 9 Q = Q 9 P (4)

P 9 (Q 9 R) = (P 9 Q) 9 R (5)

The interleaving of a program P with a nondeterministic choice between programs Q and R
consists of the interleaving of P with either Q or R, the choice being again nondeterministic.

P 9 (Q ⊓ R) = (P 9 Q) ⊓ (P 9 R) (6)

Similar reasoning leads to laws for probabilistic choice and probabilistic parallel, provided that
execution of R does not change the probabilistic expression r which is evaluated first on the
right-hand side.

(P r⊕ Q) 9 R = (P 9 R) r⊕ (Q 9 R) (7)

(P r‖Q) 9 R = (P 9 R) r‖ (Q 9 R) (8)

The laws for guarded assignment ensure that no action can be interspersed between the test of
a guard which is true and the assignment it guards.

(@i ∈ I : bi : xi := ei
o
9 Pi) 9 (@j ∈ J : cj : yj := fj

o
9 Qj)

=
(@i ∈ I, j ∈ J : bi ∧ cj : xi := ei

o
9 (Pi 9 (yj := fj

o
9 Qj))

⊓
yj := fj

o
9 ((xi := ei

o
9 Pi) 9 Qj))

@
(@i ∈ I, j ∈ J : bi ∧ ¬cj : xi := ei

o
9 (Pi 9 (yj := fj

o
9 Qj)))

@
(@i ∈ I, j ∈ J : ¬bi ∧ cj : yj := fj

o
9 ((xi := ei

o
9 Pi) 9 Qj)))

(9)
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Local block 7

Priority is given to a guarded assignment: an unguarded assignment in parallel has the chance
to be scheduled only if no guard holds.

(@i ∈ I : bi : xi := ei
o
9 Pi) 9 (y := f o

9 Q)
=
((@i ∈ I : bi : xi := ei

o
9 (Pi 9 (y := f o

9 Q))
� ∃i : I · bi �

y := f o
9 (@i ∈ I : bi : (xi := ei

o
9 Pi) 9 Q))

(10)

The passage of time is not interleaved, but experienced equally by both component programs.

(#1 P ) 9 (#1 Q) = #1 (P 9 Q) (11)

The interleaving of a delay with a guarded assignment gives priority to the guarded assignment
and only outside the disjunction of its guards is time allowed to advance.

(#1 P ) 9 (y := f o
9 Q) = (y := f) o

9 (#1 P 9 Q) (12)

(#1 P ) 9 (@i ∈ I : bi : xi := ei
o
9 Pi) = ((@i ∈ I : bi : xi := ei

o
9 (#1 P 9 Pi))

� ∃i : I · bi �

xi := ei)

(13)

4 Local block

Local blocks are used to delimit the scope of variables. Our notation for a block in which the
variable x, of type X, is local in program Q is

x|[ x :X ◦ Q ]|x .

We treat a local block as a whole, matching the beginning of the block with its end. An
exposition in the setting of wp and the refinement calculus is Morgan’s textbook [17]. For an
alternative treatment, separating the two halves of a block, see Hoare and He’s UTP text [8]
(noting that the separation is independent of their UTP treatment of it).

Many of the laws are standard, even if they are not well advertised. For example, a localised
variable is invisible outside its block.

x|[ x :X ◦ x := e ]|x = skip (14)
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Local block 8

As a result, if x does not appear in program P then since it plays no part in P , even if it is
initialised, its localisation leaves P unchanged.

x|[ x :X ◦ P ]|x = P (15)

x|[ x :X ◦ x := e o
9 P ]|x = P (16)

Localising a nondeterministic choice between two programs gives a localised version of one or
the other, the choice being again nondeterministic.

x|[ x :X ◦ P ⊓ Q ]|x = x|[ x :X ◦ P ]|x ⊓ x|[ x :X ◦ Q ]|x (17)

We assume that law also for arbitrary (nonvoid) nondeterminism.

Our treatment assumes that a block begins with a type declaration for the new local vari-
able, but not necessarily with its initialisation. An uninitialised local variable assumes a
nondeterministically-chosen value of its type. Thus,

x :X ◦ P = x :X ◦ ⊓v∈X x := v o
9 P . (18)

That involves finite nondeterminism iff the type X is finite. Of course typically the type decla-
ration is followed immediately by initialisation in P , which ‘supersedes’ that nondeterministic
choice. For example if x is a Boolean variable and P has a leading assignment initialising x to
false, then the nondeterministic default is indeed superseded:

(⊓v:B x := v o
9 x := false) = (x := false) .

The companion law to (16) can now be stated. Assume y 6= x. If the local variable x is not free
in expression e and y does not appear in program P then

x|[ x :X ◦ y := e o
9 P ]|x = y := e o

9 x|[ x :X ◦ P ]|x . (19)

To deal with the case x free in e, if x is initialised (and x 6= y and y does not appear in program
P ) then

x|[ x :X ◦ x := x0
o
9 y := e o

9 P ]|x = y := e[x0/x] o
9 x|[ x :X ◦ x := x0

o
9 P ]|x . (20)
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Local block 9

If local variable x is not initialised then Law (18) applies. Assuming the extension of Law (17)
to arbitrary nondeterminism (and x 6= y and y not in program P ) yields

x|[ x :X ◦ y := e o
9 P ]|x = ⊓v∈X y := e[v/x] o

9 x|[x :X ◦ P ]|x . (21)

Because a localised variable is invisible outside its block, localising it immediately a second time
has no further effect.

x|[ x :X ◦ x|[ x :X ◦ P ]|x ]|x = x|[ x :X ◦ P ]|x (22)

The localisation of (distinct) variables can be achieved in either order.

x|[ x :X ◦ y|[ y :Y ◦ P ]|y ]|x = y|[ y :Y ◦ x|[ x :X ◦ P ]|x ]|y (23)

That means the definition of block can be extended from one local variable to any finite set of
local variables

{ }|[ P ]|{ } := P

x, y|[ x :X o
9 y :Y ◦ P ]|x, y := x|[ x :X ◦ y|[ y :Y ◦ P ]|y ]|x .

Indeed Laws (22) and (23) ensure the consistency of that definition: blocks do indeed behave as
a ‘set-like’ function of their local variables. They demonstrate, for example, that the block with
local variables {x, x, y} is the same, just as it ought to be, as that with local variables {y, x} .

Recall (from Section 2) that since a conditional is a special case of a probabilistic choice, the
laws for localising a conditional are subsumed in those for localising probabilism.

If x is not free in the probabilistic expression r then localising a probabilistic choice between P
and Q results in a probabilistic choice between the localised versions of P and Q.

x|[ x :X ◦ P r⊕ Q ]|x = x|[ x :X ◦ P ]|x r⊕ x|[ x :X ◦ Q ]|x (24)

If the probability r depends on an initialised local variable x then the probabilism is resolved
by substitution (as in Law (20)).

x|[ x :X ◦ x := x0
o
9 P r⊕ Q ]|x = x|[ x :X ◦ x := x0

o
9 P ]|x r[x0/x]⊕ x|[ x :X ◦ x := x0

o
9 Q ]|x(25)
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Local block 10

But if the local variable is uninitialised then the default is a nondeterministic choice over all
possible initialisations (Law (21))

x|[ x :X ◦ P r⊕ Q ]|x = ⊓v∈X x|[ x :X ◦ P ]|x r[v/x]⊕ x|[ x :X ◦ Q ]|x . (26)

For example we can infer that a conditional with an unitialised Boolean test is nondeterministic:

x|[ x :B ◦ P � x � Q ]|x
= Law (18)

x|[ x :B ◦ (⊓v∈B x := v) o
9 (P � x � Q) ]|x

= standard

x|[ x :B ◦ ⊓v∈B (x := v o
9 (P � x � Q)) ]|x

= standard

x|[ x :B ◦ ⊓v∈B (P � x[v/x] � Q) ]|x
= calculus

x|[ x :B ◦ (P � true � Q) ⊓ (P � false � Q) ]|x
= definition of conditional

x|[ x :B ◦ P ⊓ Q ]|x
= Law (17)

x|[ x :B ◦ P ]|x ⊓ x|[ x :B ◦ Q ]|x .

Probabilistic parallel composition is similar to probabilistic choice. Its analogue of (24), for
example, is (provided x is not free in r),

x|[ x :X ◦ P r‖Q ]|x = x|[ x :X ◦ P ]|x r‖ x|[x :X ◦ Q ]|x . (27)

Again, guarded choice follows a similar pattern. The simple case, in which the guards do not
depend on the local variable, is

x|[ x :X ◦ (@i ∈ I : bi : Pi) ]|x = (@i ∈ I : bi : x|[x :X ◦ Pi ]|x) . (28)

Time is not localisable.

x|[ x :X ◦ #n P ]|x = #n x|[ x :X ◦ P ]|x (29)
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The localisation of an interleaving of P and Q interleaves the localisations of P and Q.

x|[ x :X ◦ P 9 Q ]|x = x|[ x :X ◦ P ]|x 9 x|[ x :X ◦ Q ]|x (30)

5 Case study

In this section we consider a circuit, at the register-transfer level, that adds its two integer
inputs inx and iny and outputs their sum to variable out. However the register containing inx
is faulty. Our first task is to model the circuit accurately in ptsc and our second is to reason
about its behaviour.

5.1 Informal description

We assume that the environment of the circuit supplies the two inputs when the circuit is ready
for them, and receives the single output when the circuit is ready to provide it. The circuit
is abstract in the sense that the registers that hold the two inputs are of type natural number
(rather than being bit strings, and rather than assuming the numbers to be a priori bounded).
One register performs natural-number increment and the other the decrement of a positive
natural number. The circuit attempts to achieve the required addition by successive concurrent
faulty-increments and decrements until the decrement register contains zero, at which point its
initial value ought (in the absence of faults) to have been ‘transferred’ to the other register.

The specification thus has three variables, all integers. When the circuit behaves correctly, it
achieves the sum:

Spec := inx, iny, out : N ◦

out := inx + iny .

The implementation contains five local variables plus the two register variables. It consists of an
initialisation of the local variables, followed by the parallel composition of the increment register
X, the decrement register Y and the control unit C.

Imp := x, y : N o
9

ie, op : 0 | 1 | 2 o
9

oe, f : 0 | 1 o
9

s : B ◦

ie, op, oe, f := 0, 0, 0, 1 o
9

X 9 Y 9 C

The three component programs share variables as follows. Recalling (Section 2) the notation
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X Y
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�

ie

op

oe

�

�
ie

op

s

inx iny

out

C

6

�

�

�

oe
-�

f

Figure 2: Register-transfer circuit interpreted as a data-flow design. The enables ie, op and oe
are shared variables essentially written-to by C and read by X and Y ; but to avoid races they
also act as semaphores and so are written also by the two registers. The status signal s, however,
is written-to by Y and read by C. The semaphore f is written-to and read by both Y and C.

for the variables accessed by a program:

vars(X) := {inx, x, ie, op, oe, out}
vars(Y ) := {iny, y, ie, op, oe, s, f}
vars(C) := {ie, op, oe, s, f} .

Thus ie, op and oe are common to all three but f and s to just Y and C, and oe to just X and
C. Variables xin and out are common to X and the environment and variable yin is common
to Y and the environment. However x and y are unique to their programs. See Figure 2.

However the increment register X increments x with probability r but overlooks the increment
with probability r.

We must first express X, Y and C in ptsc. Then we must establish the behaviour of E|[ Imp ]|E,
where E := {x, y, ie, op, oe, s, f}, and relate it to Spec.

5.2 Definition in ptsc

The increment register X consists of a ternary guarded choice, determined by the (pairwise)
disjoint conditions ie = 2, op = 2 and oe = 1. If the first guard holds, it inputs inx, decrements
ie (to avoid repeated inputs) and iterates. If the second guard holds, it tries to increment its
x register but does so successfully with probability r whilst with probability r it skips; then
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it decrements op (again, to avoid unwanted—this time critical—repetition) and iterates. We
assume that r is a positive constant, so the faulty register always has the same positive chance
of behaving correctly. If the third guard holds it outputs the value of x and terminates.

X := (@ : ie = 2 : x := inx o
9 ie := ie − 1 o

9 X) @
(@ : op = 2 : (x := x + 1 r⊕ skip) o

9 op := op − 1 o
9 X) @

(@ : oe = 1 : out := x)

The decrement register Y consists of the same guarded choice. In the case ie = 2 it begins like
X by inputting to y and decrementing ie; but then it writes the Boolean (y 6= 0) to s, lowers
the flag f and iterates. In the case op = 2 it decrements its y register and op then awaits the
semaphore f ; when f = 1 it updates s to the usual Boolean, lowers f and iterates. In the third
case, oe = 1, it terminates.

Y := (@ : ie = 2 : y := iny o
9 ie := ie − 1 o

9 s := (y 6= 0) o
9 f := 0 o

9 Y ) @
(@ : op = 2 : y := y − 1 o

9 op := op − 1 o
9 (@ : f = 1 : s := (y 6= 0) o

9 f := 0) o
9 Y ) @

(@ : oe = 1 : skip)

The control unit C begins by enabling register inputs by setting ie = 2. It then enters a loop in
which it waits for the semaphore f to be high and any previous op action to be complete (op = 0)
before reading the Boolean s and, if y 6= 0 enabling op and setting the semaphore f = 1; otherwise
it enables output and terminates.1 It seems slightly more natural (and facilitates comparison in
the next section) to use (tail) recursion rather than a loop with guard true, as follows.

C := ie := 2 o
9 D

D := (@ : (f = 0 ∧ op = 0) : (op := 2 o
9 f := 1 o

9 D) � s � oe := 1)

We conclude that whilst the design can be expressed in ptsc, the use of various values (ie, op,
oe and f) as clocking variables, or semaphores, betrays the existence of a simpler more abstract
representation. For the purposes of informing the ptsc description, we consider it now.

5.3 Comparison with process algebra

In process algebra, channels can be used to communicate the status value s from Y to the
control unit C and the values of the enables ie, op and oe from C to the registers. However the
occurrence of probability requires us to use probabilistic process algebra. We choose the process
algebra CSP [25] and its probabilistic extension pCSP [18], with contains the binary combinator

r⊕ for probabilistic choice between its two arguments.

We recall that in CSP an assignment is a process, and so is combined with its successor process
using o

9, whilst an event is combined with its successor process using →. In CSP we continue to
write the conditional construct ‘A if b else C’ as A � b � C.

1The simple modification which returns to the start, ready for another cycle, requires ‘o
9
C’ after the assignment

to oe in C and similarly in X and Y . However it adds unnecessarily to the example.
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The increment register X offers its environment a choice of three enables and in each case
performs the expected actions

X := (ie → x := inx o
9 X) 8 (op → (x := x + 1 r⊕ skip) o

9 X) 8 (oe → out := x) .

The decrement register Y offers its environment a choice of the three enables, but also commu-
nication along channel s on which it outputs the Boolean (y 6= 0)

Y := (ie → y := iny o
9 Y ) 8 (op → y := y − 1 o

9 Y ) 8 (s!(y 6= 0) → Y ) 8 (oe → skip) .

The control unit C starts by enabling ie and then iteratively inputs the value from channel s
and, if it is true enables op and reiterates but, if it is false then enables oe and terminates

C := ie → µD · (s?t → ((op → D) � t � (oe → skip))) .

The implementation is as before

Imp := (X‖Y ‖C) \ E

where we have been slightly cavalier with CSP notation in combining the hiding of the events
with those of the internal variables.

The synchronisation between sender and receiver that is part of CSP obviates the need for the
semaphores that cluttered our ptsc description. In particular Y and C appear simpler, as does
the design as a whole.

5.4 Behaviour identified

In this section we outline an algebraic approach to identifying the behaviour of the design Imp.
Consider first just the interleaving of C and Y .

ie, op, oe, f := 0, 0, 0, 1 o
9

C 9 Y
= definitions of C and Y

ie, op, oe, f := 0, 0, 0, 1 o
9

(ie := 2 o
9 µD (@ : (f = 0 ∧ op = 0) : (op := 2 o

9 f := 1 o
9 D) � s � (oe o

9 C))
9
(@ : ie = 2 : y := iny o

9 ie := ie − 1 o
9 s := (y 6= 0) o

9 f := 0 o
9 Y ) @

(@ : op = 2 : y := y − 1 o
9 op := op − 1 o

9 (@ : f = 1 : s := (y 6= 0) o
9 f := 0) o

9 Y ))
= standard reasoning and Laws (9) and (10)

ie, op, oe, f := 0, 0, 0, 1 o
9

ie := 2 o
9 y := iny o

9 ie := ie − 1 o
9 s := (y 6= 0) o

9 f := 0 o
9

µZ (op := 2 o
9 (f := 1 9 (y := y − 1 o

9 op := op − 1)) o
9 s := (y 6= 0) o

9 f := 0 o
9 Z

� s �

oe := 1)
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Next, including also X, we find

ie, op, oe, f := 0, 0, 0, 1 o
9

(C 9 Y 9 X)
= definition of X and Law (5)

ie, op, oe, f := 0, 0, 0, 1 o
9

(ie := 2 o
9 y := iny o

9 ie := ie − 1 o
9 s := (y 6= 0) o

9 f := 0 o
9

µZ (op := 2 o
9 (f := 1 9 (y := y − 1 o

9 op := op − 1)) o
9 s := (y 6= 0) o

9 f := 0 o
9 Z

� s �

oe := 1)
9
(@ : ie = 2 : x := inx o

9 ie := ie − 1 o
9 X) @

(@ : op = 2 : (x := x + 1 r⊕ skip) o
9 op := op − 1 o

9 X) @
(@ : oe = 1 : out := x))

= standard reasoning and Laws (9) and (10)

op, oe, f := 0, 0, 1 o
9

ie := 2 o
9 ((x := xin o

9 ie := ie − 1) 9 (y := yin o
9 ie := ie − 1 o

9 s := (y 6= 0) o
9 f := 0)) o

9

µZ (op := 2 o
9 (((x := x + 1 r⊕ skip) o

9 op := op − 1 o
9 X) 9 f := 1 9 (y := y − 1 o

9 op := op − 1)) o
9

s := (y 6= 0) o
9 f := 0 o

9 Z
� s �

oe := 1 o
9 out := x) .

Thus localising the variables in the set F := {ie, op, oe, f},

F |[ ie, op, oe, f := 0, 0, 0, 1 o
9 (C 9 Y 9 X) ]|F

= standard reasoning and Laws (14), (19), (20) and (24)

(x := xin 9 (y := yin o
9 s := (y 6= 0))) o

9

µZ ((((x := x + 1 r⊕ skip) o
9 X) 9 y := y − 1) o

9 s := (y 6= 0) o
9 Z

� s �

out := x) .

To establish termination (of the tail recursion on Z that is a mildly disguised loop) it suffices to
take variant function y.

On each iteration the choice between incrementing and leaving x unchanged is binary with
fixed probability r. So after i iterations the value of x is binomially distributed in the interval
[xin, xin + i]. But the number of iterations is i = yin − y and so we take as loop invariant
0 ≤ y ≤ yin and

Inv := ∀j : [0, yin − y] · x = xin + j with probability
(

yin−y
j

)

rj ryin−y−j .

Indeed Inv is established: initially y = yin and so x = xin with probability
(

0
0

)

r0 r0−0 = 1. It
is also seen to be maintained, by the expected but slightly longer calculation.
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Thus, localising also s

F ∪ {s}|[ ie, op, oe, f := 0, 0, 0, 1 o
9 (C 9 Y 9 X) ]|F ∪ {s}

= standard reasoning and Laws (14) and (20)

(x, y := xin, yin) o
9 out := x ,

where the distribution of values for out = x satisfies the invariant Inv[out/x] and the negation
of the guard (y 6= 0):

∀j : [0, yin] · out = xin + j with probability
(

yin
j

)

rj ryin−j .

In other words, as expected, out is binomially distributed over the interval [xin, xin + yin] of
integers, with ‘weight’ r.

Finally, localising also x and y gives (with E defined at the end of Section 5.1)

E|[ ie, op, oe, f := 0, 0, 0, 1 o
9 (C 9 Y 9 X) ]|E

=

out := inx + iny ,

with binomial distribution of values for out, as above.

6 Conclusions

The language ptsc of Zhu, Qin, He and Bowen [26], for probability, time and shared-variable
concurrency, has been extended in this paper to incorporate interleaving and local block. The
resulting language permits programs to be combined non-probabilistically in parallel, variables
to be localised (essential if the complexities of shared-variable programs have any hope of being
subdued) and an implementation to be compared, after localising appropriate low-level vari-
ables, with its more abstract specification. Laws have been given for the new operators and a
register-transfer-level design has been shown to meet its probabilistic specification. In general,
subtle methods are required to reason about shared-variable concurrency [24]. Use of law-based
reasoning, as done in this case study, seems to offer an alternative approach that may even be
able to be automated [9].

The next step confronting this work is, as for the original ptsc, construction of a denotational
model. We should like to have a normal form, and sufficiently many laws to transform any
program into it.

Experience with CSP has played an important part in the intuitions behind ptsc, particularly
for the guarded constructs. The proximity of the ptsc and CSP realisations of our case study
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confirms that, and suggests that it may be interesting to translate from (simple) designs in CSP
that use channel communications to avoid races, to ptsc designs which require semaphores or
equivalents for the same purpose. With more experience we will presumably gain some appre-
ciation of the difference between algebraic reasoning and the various techniques for reasoning
about shared-variable interactions. A Galois connection between the models would afford a
systematic start. It would be interesting to compare ptsc with pGCL, the probabilistic version
of Dijkstra’s guarded-command language [13] under both the expectation-transformer semantics
and distributional semantics.

The case study contains just concurrency, locality and probability, overlooking time. However
it could easily be extended to contain time: the registers could take different times (modelled in
ptsc using delay) to perform their updates and in particular the faulty increment register could
take different times depending on whether or not a fault occurs. Perhaps register delays could
even be configured to avoid races and hence obviate the need for semaphores (as in hardware
optimisation). That constitutes further work. The treatment of time in ptsc is a little simplistic:
it behaves just like a global variable. It would be interesting to explore alternatives.
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