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ABSTRACT 
 
This paper develops, validates, and applies new multivariate methodology to assess the 
effect of child mortality on both period and cohort measures of fertility. The 
methodology, which can be applied to period data as well as cohort data, is based on 
discrete-time survival models of parity progression that enable construction of a 
multivariate life table of fertility covering all parity transitions. The five dimensions of 
this life table are woman’s age, parity, duration in parity, and two dimensions 
representing lagged child mortality (number of dead children at the beginning and end of 
the previous year when the woman was one year younger). Additional socioeconomic 
predictor variables are also included in the underlying survival models. The life table is 
multivariate in the sense that it can be specified for values or categories of one 
socioeconomic predictor variable while holding other socioeconomic predictors 
constant. The life table yields a number of measures of both the quantum and the tempo 
of fertility and child mortality. It also yields a replacement rate, which measures the 
extent to which child deaths are replaced by additional births. Because the life table is 
multivariate, all measures calculated from it are also multivariate. By way of illustration, 
the methodology is applied to three Indian National Family Health Surveys conducted in 
1992–93 (NFHS-1), 1998–99 (NFHS-2), and 2005–06 (NFHS-3). Major findings are that 
dead children are incompletely replaced, and that the replacement rate rises as the total 
fertility rate falls over the three surveys, reflecting women’s increasing ability to achieve 
their wanted number of surviving children. 
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NOTATION USED IN THIS PAPER 

 
i: woman’s parity (number of children ever born) 
t: duration in parity (in years) 
T1, T2, …, Tk−1: dummy variables representing the first k−1of k one-year life table time 

intervals (alternative representation of duration in parity) 
A: woman’s starting age (in years) in any given parity transition 
a: woman’s age (in years) at a particular duration in parity t, where a = A + t (in the 

global life table, but not in the CLL equations, age a is translated to age a−10, so that 
a=0 at age 10 at the beginning of the global life table) 

Ad: Age of woman at child death in the global life table 
 
Parity transitions 

0–1: transition from a woman’s own birth to her first birth 
1–2: transition from first to second birth 
2–3: transition from second to third birth 
3–4: transition from third to fourth birth 
4–5: transition from fourth to fifth birth 
5–6: transition from fifth to sixth birth 
6+ – 7+: transition from sixth or higher-order birth to next higher-order birth 

 
CLL model: complementary log−log model (one type of discrete-time survival model) 
 
Pit method: method in which the basic predictor variable in the CLL model for each 

parity transition is duration in parity 
Pait method: method in which the basic predictor variables in the CLL model for each 

parity transition are age at starting parity and duration in parity 
Paitmn method: method in which the basic predictor variables in the CLL model for each 

parity transition are age at starting parity, duration in parity, and two indicators of 
child mortality 

 
m: child mortality state at the beginning of age a−1 (number of previous child deaths)  
n: child mortality state at the beginning of age a (number of previous child deaths) 
n : average child mortality state at the beginning of age a (average number of previous 

child deaths to women at the beginning of age a, as calculated for person-year 
observations with specified characteristics in the expanded data set) 

Mm: Alternative notation for m 
Mn:  Alternative notation for n 
D1: Alternative notation for m 
D2: Alternative notation for n 
ΔD: D2 − D1 
D: Mean number of child deaths per woman at age 50, calculated from the global life 

table 
R: Replacement rate, calculated as the model-predicted increment in the TFR generated 

by a one-child increase in the average number of child deaths experienced by women 
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by the end of their reproductive age spans (i.e., by age 50; women’s mortality during 
the reproductive age span is assumed to be zero in this calculation) 

Pt: for women of any given parity, Pt is the conditional probability of failure (next birth) 
between durations t and t+1 

Pait: for women age a, parity i, and duration t, Pait is the conditional probability of failure 
(next birth) between ages a and a+1 and therefore also between durations t and t+1 

Paitmn: for women age a, parity i, duration t, and child mortality states m and n, Paitmn is 
the conditional probability of failure (next birth) between ages a and a+1 and 
therefore also between durations t and t+1 

nmtia
P

,,,, : for women age a, parity i, duration t, and child mortality states m and n , 

nmtia
P

,,,,  is the conditional probability of failure (next birth) between ages a and a+1 

and therefore also between durations t and t+1 ( n  is substituted for D2 when 
computing nmtia

P
,,,,  from the underlying CLL model equation)   

faitmn: number of failures (births) between ages a and a+1 (and therefore also between 
durations t and t+1) in the global life table to women of parity i and child mortality 
states m and n  

Faitmn: failure rates by age, parity, duration in parity, and mortality states m and n are 
obtained by dividing faitmn by 1,000. 

Qa,i,t,m: the proportion of women at age a, parity i, duration t, and child mortality state m 
for whom child mortality state changes during the transition. 

Saitmn: number of women at age a, parity i, duration in parity t, and child mortality states 
m and n in the global life table 

 
GLT: Global life table 
 
TFRNCM: child-mortality-effect-free TFR that is calculated from a GLT that incorporates 

child mortality, which is set to zero 
TFRWCM: child-mortality-effect-present TFR calculated from a GLT that incorporates 

child mortality 
ΔTFR: TFRWCM − TFRNCM 
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INTRODUCTION1 

This paper develops, validates, and applies new multivariate methodology to assess the 
effect of child mortality on fertility. Methodology is based on discrete-time survival 
models of parity progression, with one model for each parity transition. A woman’s 
parity is defined as the number of children that she has ever borne. Parity transitions are 
from a woman’s own birth to her first birth, from first to second birth, from second to 
third birth, and so on. Each model pertaining to a particular parity transition yields a set 
of model-predicted birth probabilities by woman’s age, starting parity, duration in parity, 
and child mortality (two lagged child mortality variables representing number of child 
deaths at the beginning and end of the previous year when the woman was one year 
younger), as well as socioeconomic variables of interest. Together, over all parity 
transitions, the probabilities by age, parity, duration in parity, and child mortality are used 
to construct, for specified values of the socioeconomic variables, a five-dimensional life 
table of fertility covering all parity transitions. This life table is referred to as a “global 
life table” (GLT) in order to distinguish it from life tables pertaining to each parity 
transition separately.  
 
 The five dimensions of the global life table are age, parity, duration in parity, and 
the two dimensions representing child mortality. The global life table is multivariate in 
the sense that it can be constructed by values or categories of one socioeconomic 
predictor variable while holding the other socioeconomic predictors constant. The 
multivariate life tables yield various measures of the quantum and tempo of fertility and 
child mortality. Measures of the quantum of fertility include parity progression ratios 
(PPRs), age-specific fertility rates (ASFRs), and the total fertility rate (TFR). Measures of 
the tempo of fertility include mean and median ages at childbearing (by birth order and 
for all births combined) and mean and median closed birth intervals. For ease of 
exposition, these quantum and tempo measures are referred to collectively as 
“components of the TFR.” Quantum measures of child mortality, also calculated from the 
global life table, include mean number of child deaths per woman and child mortality 
rates by age of woman (not by age of child, who can be of any age at death). Tempo 
measures of child mortality include mean and median ages of woman at time of child 
death. These quantum and tempo measures of child mortality are also multivariate. Most 
important, the multivariate global life table yields a multivariate replacement rate, which 
measures, on average, the extent to which parents replace a dead child.  
 
 The validity of the methodology is tested by applying it to India’s first National 
Family Health Survey (NFHS-1), which was conducted in 1992–93. The application is to 
both cohort and period data. The cohort analysis is based on all women age 45–49 at time 
of survey. The period analysis pertains to the 5-year period preceding the survey, 
spanning years 1988 to 1992, and is based on all women age 10–49 at time of survey. 
Following validation, the methodology is applied in more detail to not only NFHS-1 but 
also NFHS-2 and NFHS-3, which were conducted in 1998–99 and 2005–06, respectively.  
 

                                                 
1 This working paper is an updated version of a previous working paper (Eini-Zinab 2010b), which is based 
on the author’s PhD dissertation (Eini-Zinab 2010a). 
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METHODOLOGY 
 
Background 
 
The methodology builds on earlier work, starting with a fertility estimation method 
developed by Feeney (1983, 1986). Feeney’s method, which is not multivariate, is also 
based on life tables of parity progression, with one life table for each parity transition. 
Each life table yields a parity progression ratio (PPR). A total fertility rate (TFR) is 
calculated from the PPRs. The life tables for the various parity transitions also yield 
estimates of mean and median closed birth intervals by birth order. 
  
 Using discrete-time survival models of parity progression (one such model for 
each parity transition i to i+1), Retherford et al. (2009, 2010a) extended Feeney’s method 
by making it multivariate. For any given value of i, the survival model for transition i to 
i+1 yields a set of model-predicted values of the probabilities Pit, where i denotes parity, t 
denotes duration in parity (measured in years), and Pit denotes the probability of a next 
birth between durations t and t+1 for a woman of starting parity i. The model-predicted 
values of Pit are multivariate in the already-mentioned sense that they can be tabulated by 
values or categories of one socioeconomic predictor variable while holding constant the 
other socioeconomic predictor variables that are included in the model. The probabilities 
Pit enable construction of a life table of parity progression for the particular parity 
transition under consideration. Because the Pit are multivariate, the parity-specific life 
table as a whole is also multivariate, as are all fertility measures calculated from it (e.g., 
PPR and mean and median closed birth intervals). A multivariate TFR is calculated from 
the multivariate PPRs pertaining to all the parity transitions. If there are no  
socioeconomic predictor variables in the underlying survival models, the only remaining 
predictor variable in each model is duration in parity t, in which case the methodology 
yields results that are (to a close approximation) identical to those yielded by Feeney’s 
original method, which is more exact. Retherford et al. (2009, 2010a) refer to this 
extension of Feeney’s method as the Pit method. 
 
 Retherford et al. (2010b) subsequently extended the methodology further by 
adding woman’s age A at starting parity to the set of predictor variables in each of the 
underlying discrete-time survival models of parity progression. Collectively these models 
yield multivariate estimates of the birth probabilities Pait, where a denotes woman’s age 
at duration t. The multivariate probabilities Pait are then used to construct the multivariate 
global life table (which is actually a set of global life tables, depending on the values of 
the socioeconomic variables) that spans all parity transitions, in contrast to the separate 
life table for each parity transition in the Pit method. This global life table yields 
multivariate estimates of not only PPRs, mean and median closed birth intervals, and 
TFR, but also ASFRs and mean and median ages at childbirth (both overall and by 
child’s birth order). Retherford et al. (2010b) refer to this extension of the Pit method as 
the Pait method.2 
                                                 
2 The earlier papers on the Pit and Pait methods subdivide the parity transition 0-1 into two transitions: 
woman’s own birth to her first marriage, and first marriage to first birth. This is not done in this paper, 
because child deaths cannot occur during the 0-1 transition, because no birth has yet occurred. 
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 Retherford et al. (2010b) have summarized some general features of the discrete-
time survival models that underlie the Pit and Pait methods. These features, which also 
underlie the models that underlie the further-extended method developed in the present 
paper, are the following: 
 
 As in the case of the conventional TFR, the global life table, which also yields a 
TFR, ignores mortality of women. I.e., the calculation of the global life table assumes 
zero mortality of women during the reproductive age span. (Of course, the global life 
table that incorporates child mortality does allow that the children of these women may 
die.)  
 
 The type of discrete-time survival model used in these methods is the 
complementary log−log (CLL) model. The CLL model is preferred over the more 
commonly used discrete-time logit model for reasons explained by Retherford et al. 
(2009, 2010a). Regardless of which type of discrete-time survival is used, the CLL model 
for a particular parity transition is applied not to the original “person sample” but instead 
to an “expanded sample” of person-year observations created from the original person 
observations (Allison 1982; 1995). A separate expanded data set is created for each parity 
transition. For each woman in the original sample who at some time in the past made it to 
the parity transition’s starting parity, a person-year observation is created for each single-
year value of duration in parity t up to the year of failure or censoring. A person-year 
observation is created for the year in which failure occurred if a failure did occur, but 
person-year observations are not created for censored years.  
 
 Cases where two births from two different pregnancies occur in the same year and 
cases where multiple births from the same pregnancy occur during the year are included 
in the expanded data sets. This is possible because each parity transition is modeled 
separately, so that two or more successive parity transitions (involving two or more 
successive failures) for a particular woman can occur in the same year of age―but not in 
the same year of duration in parity t, which reverts back to zero immediately after the 
first in a set of multiple events because of the increase in the woman’s parity. In the case 
of multiple births from the same pregnancy, births are assumed to occur sequentially, and 
birth orders are randomly assigned. This way of constructing the expanded data sets 
guarantees that the estimates of Pit or Pait calculated from the expanded data sets 
incorporate all events that occurred, even when more than one event occurred in the same 
year of age. An assumption underlying this way of modeling multiple events in a one-
year age interval is that all events, whether a first birth or a next birth, occur at the start of 
the interval.  
 
 The expanded person-year data set for a particular parity transition makes it easy 
to include time-varying socioeconomic predictor variables in the CLL model for that 
transition. For example, if a person moves from rural to urban, some of the person-year 
observations created for that person are coded as rural and some are coded as urban 
(which can be done if migration data are both included in the data set and sufficiently 
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detailed). The CLL model can also handle time-varying effects of predictor variables, by 
interacting predictor variables with time or some function of time (e.g., t and t2). 
 
 Multivariate estimates of TFR and its components can be derived not only from 
cohort data but also from period data. Because the CLL model handles left-censoring as 
well as right-censoring, one simply bases period estimates of TFR and its components on 
expanded data sets that treat person-year observations before and after the period of 
interest as censored. Otherwise the methodology is the same for period data (pertaining to 
synthetic cohorts) and cohort data (pertaining to real cohorts). The only difference is how 
the expanded person-year data set is constructed.  
 
 The methodology allows calculation of model-predicted estimates of TFR and its 
components by categories of one socioeconomic predictor variable while controlling for 
(i.e., holding constant) the other socioeconomic predictor variables that are included in 
the underlying CLL models. These estimates are referred to as “adjusted estimates.” 
Estimates of TFR or one of its components by categories of a predictor variable without 
controlling for other predictor variables, which are omitted from the underlying CLL 
models, are referred to as “unadjusted estimates.” Regardless of the degree of complexity 
of the underlying models, both unadjusted and adjusted estimates can be presented in 
simple bivariate tables or graphs, the essential meaning of which is readily understood by 
non-statisticians. This is a useful feature of the methodology, especially when trying to 
communicate results to policymakers. 
 
 Standard errors of the model-predicted estimates of TFR and its components can 
be calculated by the jackknife method, following the approach used in DHS surveys. This 
was done and significance tests were conducted in the earlier papers using the Pit method 
(Retherford et al. 2009, 2010a). Application of the jackknife method, which is a brute-
force method, was found to be very computer-intensive, however, requiring weeks of two 
fast desktop computers operating around the clock. Application of the jackknife method 
promises to be much more computer-intensive in the case of the Pait method, to which it 
has never been applied. It is also not applied in this paper. 
 
 Further details about these common features may be found in the earlier papers 
(Retherford et al. 2009, 2010a, 2010b). 
 
Incorporating Child Mortality into the Underlying CLL models  
 
The present paper builds on the Pait method by incorporating two measures of child 
mortality as an additional dimensions of the global life table, and then by using this 
expanded global life table to estimate the effect of child mortality on fertility. As already 
mentioned, the expanded global life table has five dimensions: age, parity, duration in 
parity, and two dimensions representing child mortality. The child mortality dimension is 
indicated by two indices, m and n, where m denotes number of child deaths at the start of 
the interval a−1 to a, and n denotes child mortality state at the end of that interval (i.e., at 
age a). These definitions of m and n effectively lag child mortality by one year of age in 
the CLL model for any given parity transition. This one-year lag in child mortality 
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minimizes the problem of reverse-causality from fertility to child mortality, inasmuch as 
a birth to a woman of parity i between ages a and a+1 cannot have much of an effect on 
whether any of her previous children died one or more years ago when she was one or 
more years younger. (The fact that she was pregnant during part of the previous year may 
have had some effect on her care of previous children and therefore on their risk of 
mortality, however. In this paper this pregnancy-related risk is ignored.) This extension 
of the Pait method is accordingly referred to here as the Paitmn method. 
 
 As in the case of the Pait method, the Paitmn method yields PPRs, ASFRs, TFR, 
mean and median ages at childbirth by child’s birth order (or by woman’s parity just 
before she had the birth, when woman’s parity was one less than the child’s birth order) 
and for all births combined, and mean and median closed birth intervals. It additionally 
yields mean number of child deaths per woman, child mortality rates by age of woman 
(not by age of child, who can be of any age at death), and mean and median ages of 
woman at child death. The methodology also yields a replacement rate R, which 
measures the extent to which parents replace dead children. More specifically, R is 
calculated as the model-predicted increment in the TFR generated by a one-child increase 
in the average number of child deaths experienced by women by the end of the 
reproductive age span (i.e., by age 50). Since the replacement rate is calculated from a 
global life table that is multivariate, the replacement rate is also multivariate. 

 
The Paitmn method, like the Pit and Pait methods, is based on a set of underlying 

discrete-time survival models, one for each parity transition. The difference is that, for 
any specified value of i, the dependent variable is Paitmn instead of Pit or Pait, and the set 
of predictor variables additionally includes the two child mortality variables mentioned 
earlier. As in the earlier papers on the Pit and Pait methods, the discrete-time survival 
model that is used is the complementary log−log, CLL, model.  

 
Figure 1 depicts graphically the transitions of women along the new global life 

table’s multiple dimensions, for each of the first three parity transitions 1–2, 2–3, and 3–
4, starting from any particular age a. (Child mortality does not come into play in the 0–1 
transition, because there are as yet no previous births.) Duration in parity t starts at 0.3  
Mm denotes child mortality state (irrespective of child’s age at death) for a woman age a 
and duration t. Subscript m refers to number of dead children at the start of the previous 
age interval (a−1 to a).  

 
Panel 1 of Figure 1 portrays the 1–2 parity transition. The logic of this panel and 

of the Paitmn method in general requires that a woman cannot experience more than one 
child death in any given year. But some actually do. This problem is handled in the 
construction of the data set in the following way: If, for example, a woman had two child 
deaths in a year (a rare occurrence), one of the two deaths is randomly moved to the 
following year in the woman's birth history, before the expanded data set is constructed. 
If a woman had three child deaths in the same year, two of them, randomly selected, are 

                                                 
3 In a CLL model for a particular parity transition, t starts at 1, which is later translated to zero when 
computing the global life tables. 
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Figure 1: Possible child mortality transitions over age and duration in parity during parity 
transitions 1-2, 2-3, and 3-4 

Note: M0, M1, M2, ... denote one-year-lagged child mortality states4.   
                                                 
4 Subscript m in Mm denotes woman's number of previous child deaths at the start of the previous age 
interval. Child deaths pertain to children of any age.  
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moved to the following two years, with one child death assigned to each of those two 
years.  
 
 Consider a woman in Panel 1 who starts in state M0 at age a duration 0 (i.e., t = 0). 
At age a+1 duration 1 (i.e., t = 1), there is still only one child mortality state, M0, because 
child mortality state is lagged by one year of age, so that M0 at age a+1 corresponds to 
number of previous child deaths at age a. A woman in the M0 state at age a+1 duration 1 
can continue in that state until age a+2 duration 2 if she does not experience a child death 
between age a duration 0 and age a+1 duration 1. Alternatively, the woman can 
experience a child death between age a duration 0 and age a+1 duration 1, in which case 
she moves from M0 to M1 between age a+1 duration 1 and age a+2 duration 2. Once a 
woman attains child mortality state M1, she remains in that state until one year after she 
has a second birth (in which case she is no longer in parity transition 1–2) or reaches ten 
years of duration in parity without having yet had a second birth (which is the situation 
depicted in the figure). The sequence is truncated at duration 10 because it is assumed 
that if the woman has not had a next birth by duration 10, she will never have a next 
birth. The logic of Panels 2 and 3 is similar, the difference being that the number of 
possible child mortality transitions increases as parity increases.  

 
 The basic predictor variables in the underlying CLL model for a particular parity 
transition i to i+1 are woman’s age A at starting parity and woman’s duration in parity, 
where duration in parity is specified sometimes by t and sometimes by a set of dummy 
variables T1, T2, ..., T9 (with the tenth interval as the reference category), indicating 
particular one-year age intervals. The difference is that, for the 1–2 and higher-order 
parity transitions, the Paitmn model also includes the predictor variables D1 (number of 
previous child deaths as of one year ago (at age a−1) when the woman was one year 
younger) and D2 (number of previous child deaths at age a). The difference D2−D1 is 
either 0 or 1. Additional predictor variables are socioeconomic characteristics of interest.  
 

 The CLL model for parity transitions higher than 0–1, with residence and 
education as examples of socioeconomic predictors (the full set of socioeconomic 
predictors is shown later), is: 

 
P = 1− exp{−exp[a + b1T1 + b2T2 + ... + b9T9 + A(c1+c2t+c3t2) + A2(d1+d2t+d3t2)  

  + D1(e1+e2t+e3t2) + D2(f1+f2t+f3t2) +  U(g1+ g2t+ g3t2) + L(j1+ j2t+ j3t2)    

  + H(k1+ k2t+ k3t2) + D1(m1A + m2A2) + D2(n1A + n2A2)  + U(o1A + o2A2)        

  + L(q1A + q2A2) + H(r1A + r2A2) + D1(s1U + s2L + s3H) + vUL + wUH]}     (1) 

 
where P is the predicted probability of a next birth (also called the discrete hazard of next 
birth) in a one-year interval; T1, T2, ..., T9 are dummy variables representing the first nine 
life table time intervals (with the tenth interval as the reference category); t is a counter 
variable (equal to 1, 2, ..., 10) that also denotes duration interval; A is age at starting 
parity; D1 and D2 represent child mortality as defined earlier; U is urban/rural residence 
(1 if urban, 0 if rural); L and H denote low and high education, with illiterate as the 
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reference category; and bi, ci,  di, ei, fi, gi, ji, ki, mi, ni, oi, qi, ri, si, v, and w are coefficients, 
along with the intercept a, to be fitted to the data. Regarding the variables Ti, duration 
interval 1 (corresponding to t=1) is specified by T1 = 1 and T2 = T3 = ... = T9 = 0. 
Duration interval 2 (corresponding to t=2) is specified by T1 = 0, T2 = 1, and T3 = ... = T9 
= 0. And so on, up to duration interval 10 (the last interval), which is specified by T1 = T2 
= ... = T9 = 0. In this equation, A ranges from 10 to 49 and t ranges from 1 to 10. Births 
occurring at a duration of more than 10 years are negligible in number and are ignored.   
 
 The model equation for the 0–1 transition is similar, except that t ranges from 1 to 
30 (corresponding to ages 10–40), the set of Ti variables is expanded to T1, T2, ..., T29, and 
the age variable A and the child mortality variables D1 and D2  are dropped. First births 
below age 10 (if any) are re-coded to age 10 (the age at which the global life table begins, 
in the case of our Indian application). First births after age 40 are negligible in number 
and are ignored.5 
 

The rationale for the specification of the predictor variables is much the same as 
in the earlier papers (Retherford et al. 2009, 2010a, 2010b). An A2 term is included as 
well as an A term in the set of predictor variables, because the rise and fall of 
fecundability as age increases suggest that the effect of starting age on parity progression 
will be non-linear, and that a quadratic specification of starting age will adequately 
capture this non-linearity. The effects of both A and A2 are specified as time-varying (i.e, 
t-varying) because the effects of duration in parity on parity progression change as 
starting age increases, due not only to biological influences (changing fecundability) but 
also to behavioral influences. An example of a behavioral influence is that couples are 
more likely to settle into a life style with few or no children the longer they delay 
marriage and childbearing (Retherford et al. 2010b).  

 
Except for the variable D2, the set of predictor variables in equation (1) includes 

all two-way interactions among the predictor variables in order to achieve a more flexible 
fit to the data. In the case of D1 and D2, we want to allow that the effects of both D1 and 
D2 can be non-linear over age and duration within a particular parity transition. 
Therefore, both D1 and D2 are both interacted with t, t2, A, and A2. In the case of the 
socioeconomic predictors, however, it is necessary to interact only D1 with the 
socioeconomic predictors. The reason is that D1 and D2 together measure a woman’s 
child mortality trajectory over a one-year age or duration interval, and the aim is to 
interact this trajectory with each of the socioeconomic predictors. Only one of the 
variables D1 and D2 is needed to do this. We choose D1 over D2 because, for any 
particular woman, the value of D1 at the start of the interval is the same regardless of 
whether she experiences a child death during the interval.  

 

                                                 
5 In the expanded data set for the 1-2 transition, however, first births after age 40 (up to a maximum of 49) 
are included in the set of starting events. Likewise, in the expanded data sets for the 2-3 and higher-order 
transitions, all next births at durations 0-9, regardless of woman’s age, are included in the set of terminal 
events, and all births of the specified birth order, regardless of woman’s age or duration in parity, are 
included in the set of starting events. 
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Model-predicted values of PAitmn for specified values of the socioeconomic 
predictors are obtained by indicating the value of i for the parity transition under 
consideration and substituting appropriate values of A, t, T1, ..., T9, D1, and D2 into fitted 
equation (1).  

 
At higher parities, where sample sizes get smaller and non-convergence may occur, 

a quadratic specification of duration is used throughout:  
 
P = 1− exp{−exp[a + b1t + b2t2 + A(c1+c2t+c3t2) + A2(d1+d2t+d3t2)       

  + D1(e1+e2t+e3t2) + D2(f1+f2t+f3t2) +  U(g1+ g2t+ g3t2) + L(j1+ j2t+ j3t2)    

  + H(k1+ k2t+ k3t2) + D1(m1A + m2A2) + D2(n1A + n2A2)  + U(o1A + o2A2)         

  + L(q1A + q2A2) + H(r1A + r2A2) + D1(s1U + s2L + s3H) + vUL + wUH]}     (2) 
 

Non-convergence mainly occurs when one or more of the four cells in the 2x2 cross-
classification of the individual-level dichotomous dependent variable FAILURE (1 if 
failure (i.e., the terminating event occurred), 0 otherwise) against any of the dichotomous 
predictor variables is empty (Allison, 1995).  

 
Eventually, as one proceeds to higher parity transitions, even equation (2) will not 

converge to a solution. In this case, one needs to use an open-ended parity transition (e.g., 
10+ to 11+), for which all person-year observations in the expanded data sets for the 
single-parity transitions comprising the open-ended parity transition (e.g., 10–11, 11–12, 
12–13, etc.) are pooled. One first tries the following CLL model for this open-ended 
parity transition: 

 
P = 1− exp{−exp[a + b1T1 + b2T2 + ... + b9T9 + A(c1+c2t+c3t2) + A2(d1+d2t+d3t2)      

  + D1(e1+e2t+e3t2) + D2(f1+f2t+f3t2) + U(g1+ g2t+ g3t2) + L(j1+ j2t+ j3t2)    

  + H(k1+ k2t+ k3t2) + D1(m1A + m2A2) + D2(n1A + n2A2) + U(o1A + o2A2)         

  + L(q1A + q2A2) + H(r1A + r2A2) + D1(s1U + s2L + s3H) + vUL + wUH + x1 I    

  + x2 I2]}                    (3) 
 

where I denotes a woman’s parity at the start of the year within a person-year observation 
(before any birth that may have occurred within that person-year observation). If, because 
of convergence problems, this equation cannot be estimated, one then replaces the 
dummy variables T1, ..., T9 with t and t2 in equation (3) and tries to fit that model. If that 
does not work, one has to broaden the open parity interval to include one more lower 
parity transition (e.g., 9–10, so that the open parity interval becomes 9+ to 10+). 
 

Collectively, the CLL models for the various parity transitions yield model-
predicted failure (i.e., birth) probabilities Paitmn for specified values (usually representing 
categories) of the socioeconomic characteristics. The Paitmn are conditional probabilities 
of failure (next birth); i.e., they are conditional on “survival” to age a, parity i, duration t, 
and child mortality states m at age a and n at age a+1. (Because child mortality variables 
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are lagged by one year, the actual ages are a−1 and a rather than a and a+1.) The 
probabilities Paitmn for a particular set of values of the socioeconomic characteristics 
allow calculation of a global life table (discussed in the next section), from which one can 
calculate, for the specified values of the socioeconomic characteristics, not only model-
predicted values of TFR and its components, but also child mortality measures and a 
replacement rate indicating the extent to which parents replace children who have died.  

 
Equations (1) – (3) can also be used to construct unadjusted and adjusted 

probabilities Paitmn by socioeconomic characteristics (such as residence and education). 
Unadjusted probabilities Paitmn by values or categories of a particular socioeconomic 
variable are obtained by omitting all other socioeconomic variables from the equations. 
Adjusted probabilities by values or categories of a particular socioeconomic variable are 
obtained by retaining not only this particular socioeconomic variable as the main 
socioeconomic variable of interest but also all the other socioeconomic variables, which 
are controlled by holding them constant at their duration-specific mean values in the 
particular parity transition under consideration when varying the values or categories of 
the main socioeconomic variable. The procedure for doing this is described in more detail 
by Retherford et al. (2010b). 

 
The unadjusted and adjusted probabilities Paitmn are then used to calculate 

unadjusted and adjusted global life tables that incorporate child mortality. The adjusted 
global life table is multivariate in all the socioeconomic variables as well as the 
demographic variables corresponding to a, t, m, and n in the underlying CLL models for 
the various parity transitions. As already mentioned, this implies that all fertility and 
child mortality measures calculated from the adjusted global life table, including the child 
replacement measures, are also multivariate, as will be shown in the following section.  

 
Constructing the Global Life Tables from the Birth Probabilities Paitmn  

The model-predicted estimates of Paitmn are the basic building blocks for constructing the 
global life table that incorporates child mortality. This global life table is sometimes 
referred to here in shorthand notation as the “GLTWCM,” where subscript WCM denotes 
“with child mortality.” Saitmn and faitmn are additional building blocks. Saitmn denotes 
number of “survivors” (women), and faitmn denotes the number of failures (births) at age 
a, parity i, duration in parity t, child mortality state m at exact age a, and child mortality 
state n at exact age a+1. (Recall again that, because the child mortality variables are 
lagged by one year, these two ages are actually a−1 and a.) When the difference between 
m and n is 0, there is no change in child mortality state over the interval a to a+1and 
duration t to t+1. When the difference is 1, it indicates that, among the women of parity i 
who attained duration t at age a, child mortality state changes from Mm to Mm+1.  

 
Because a woman may or may not experience a child death over a one-year 

interval in the global life table, it is necessary to partition the Saitmn women into two 
groups, according to whether they experienced a child death. This requires estimation of 
a partitioning factor, denoted by Qaitm, which indicates the proportion who experience a 
child death over the interval. The proportion who do not experience a child death is then 
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1−Qaitm. The procedure for calculating the partitioning factor is explained later. For the 
moment, we shall assume that the values of Qaitm have been calculated and are known. 

 
With the partitioning factors defined and calculated, it is straightforward to 

construct a global life table that includes child mortality. As in the development of the 
Pait method, the formulae are built up one parity transition at a time. The formulae for the 
0–1 transition in the new global life table are basically the same as in the global life table 
derived by the earlier Pait method, since there is no previous child mortality in the case of 
0–1 transition.  

 
 Equations (1) – (3) generate values of PAitmn for specified values of the 
socioeconomic variables. After these probabilities are generated, then, as explained by 
Retherford et al. (2010b), in order to simplify the global life table equations that come 
later, the variables A and t are re-labeled by replacing A with a = (A−10)+(t−1) = A+t−11, 
and by replacing t with t−1. Duration in parity t then starts at 0 instead of 1 (consistent 
with conventional demographic notation), and age in the global life table starts at 0 
instead of 10. As an example of the re-labeling of A and t, the probability PAitmn = 
P27,4,3,1,1 is re-labeled as Paitmn = P19,4,2,1,1.  
 
 In the global life table, unlike the underlying CLL equations, duration in parity 
can be higher than 30 years for the 0–1 transition, and higher than 10 years for higher-
order transitions, because everyone is followed from age 0 to age 40 (previously age 10 
to age 50). This is handled in the global life table by setting Pa,0,t,m,n = 0 when t  > 29, and 
by setting Paitmn = 0 when i > 0 and t  > 9.  

 
In sum, the ranges of a, i, and t in the global life table equations shown below are 

the following: Age a ranges from 0 to 39 (prior to re-labeling, ages 10 to 49). Duration in 
parity t ranges from 0 to 39 in the 0–1 transition (but from 1 to 30 in the underlying CLL 
model for the 0–1 transition), and from 0 to 39 in each higher-order transition (but from 1 
to 10 in the underlying CLL model for each higher-order transition). 

 
Formulae for the 0–1 transition are then:   
 

S0,0,0,0,0 = 1,000              (4) 
 
Sa,0,t,0,0 = Sa,0,a,0,0 = Sa−1,0,a−1,0,0 (1 − Pa−1,0,a−1,0,0)           for a > 0     (5) 
 
fa,i,t,0,0 =  Sa,i,t,0,0 Pa,i,t,0,0                (6) 
 
Because there is no one-year lagged child mortality in the case of the 0–1 transition, m 
and n are both zero for Saitmn and faitmn.  
 
 The formulae for higher-order transitions use the same basic logic as that used in 
the Pait method, except that they are more elaborate because they incorporate non-zero 
child mortality. As already discussed, Panel 1 of Figure 1 for the 1–2 parity transition 
shows how women progress by age, duration in parity, and child mortality state. Panel 1 
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of Figure 2 shows the corresponding progression of survivors, starting with Saitm*,where 
the asterisk indicates that the value of n can be either m or m+1. Panel 2 elaborates Panel 
1 by partitioning Saitm* into two groups, one consisting of women who do not experience a 
child death during a one-year interval, and the other consisting of women who do 
experience a child death during the one-year interval.  
 

Formulae corresponding to Panel 2 of Figure 2 for the 1–2 transition are: 
 
 If t=0: 

∑∑ == 0,0,,0,0,0,,0,0,0,,0,0,0,0,1, )( tatataa fPSS       where the summation is over t  (7)          

01,0,0,1, =aS            (8) 

01,1,0,1, =aS            (9) 

If t = 1: 

)1)(1( 0,1,1,0,0,1,1,0,0,0,1,10,0,1,1, aaaa QPSS −−= −      for a > 0      (10) 

0,1,1,0,0,0,1,10,0,0,1,11,0,1,1, )1( aaaa QPSS −− −=                for a > 0       (11) 

01,1,1,1, =aS             (12) 

If t = 2: 

)1)(1( 0,2,1,0,0,1,1,10,0,1,1,10,0,2,1, aaaa QPSS −−= −−   
 for a > 0     (13) 

0,2,1,0,0,1,1,10,0,1,1,11,0,2,1, )1( aaaa QPSS −− −=     for a > 0         (14) 

)1( 1,0,1,1,11,0,1,1,11,1,2,1, −− −= aaa PSS      for a > 0                   (15) 

If t > 2: 

)1)(1( 0,,1,0,0,1,1,10,0,1,1,10,0,,1, tatatata QPSS −−= −−−−    for a > 0          (16) 

0,,1,0,0,1,1,10,0,1,1,11,0,,1, )1( tatatata QPSS −−−− −=     for a > 0        (17) 

)1)(()1)(( 1,1,1,1,11,1,1,1,11,0,1,1,11,0,1,1,11,1,,1, −−−−−−−− −+−= tatatatata PSPSS         for a > 0         (18) 

aitmnaitmnaitmn PSf =                (19) 
 

The formulae for higher-order parity transitions follow the same logic, with the 
following exceptions: (1) When t = 0, one needs to add the number of births from the 
previous transition in order to determine how many women start the next transition in 
each mortality state. (2) More child mortality states are added as parity increases.  

 
The formulae for parity transition 2–3 (i = 2) provide an example. In order to 

clarify these formulae, Panel 2 of Figure 1 is elaborated in Figure 3 to show how women  
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Figure 2: Elaboration of panels 1 of Figure 1 

 

 

Note: For t > 0, Sa,i,t,m,* in panel 1 is partitioned into Saitmm and Saitmn (where n = m +1) in 
panel 2. The asterisk in Sa,i,t,m,* indicates that the child mortality state at the end of the 
interval (equivalently, at the start of the next interval) can be either m or m+1. 
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are partitioned into two groups at each age, parity, duration in parity, and child mortality 
state.  

 
If t = 0: 

)1)()(( 0,0,2,0,0,,1,0,0,,1,0,0,0,2, atataa QPSS −= ∑            where the summation is over t  (20) 

0,0,2,0,0,,1,0,0,,1,1,0,0,2, ))(( atataa QPSS ∑=          where the summation is over t  (21) 

∑∑ += )()( 1,1,,1,1,1,,1,1,0,,1,1,0,,1,1,1,0,2, tatatataa PSPSS   where the summation is over t     (22) 

02,1,0,2, =aS            (23) 

02,2,0,2, =aS            (24) 

If t = 1: 

)1)(1( 0,1,2,0,0,0,2,10,0,0,2,10,0,1,2, aaaa QPSS −−= −−   for a > 0            (25) 

0,1,2,0,0,0,2,10,0,0,2,11,0,1,2, )1( aaaa QPSS −− −=    for a > 0            (26) 

)1))(1()1(( 1,1,2,1,1,0,2,11,1,0,2,11,0,0,2,11,0,0,2,11,1,1,2, aaaaaa QPSPSS −−+−= −−−−   for a > 0       (27) 

1,1,2,1,1,0,2,11,1,0,2,11,0,0,2,11,0,0,2,12,1,1,2, ))1()1(( aaaaaa QPSPSS −−−− −+−=          for a > 0        (28) 

02,2,1,2, =aS             (29) 

If t = 2: 

)1)(1( 0,2,2,0,0,1,2,10,0,1,2,10,0,2,2, aaaa QPSS −−= −−    for a > 0          (30) 

0,2,2,0,0,1,2,10,0,1,2,11,0,2,2, )1( aaaa QPSS −− −=     for a > 0          (31) 

)1))(1()1(( 1,2,2,1,1,1,2,11,1,1,2,11,0,1,2,11,0,1,2,11,1,2,2, aaaaaa QPSPSS −−+−= −−−−    
for a > 0         (32)         

1,2,2,1,1,1,2,11,1,1,2,11,0,1,2,11,0,1,2,12,1,2,2, ))1()1(( aaaaaa QPSPSS −−−− −+−=
      

for a > 0    (33)            

)1( 2,1,1,2,12,1,1,2,12,2,2,2, −− −= aaa PSS        for a > 0                 (34) 

If t > 2:  

)1)(1( 0,,2,0,0,1,2,10,0,1,2,10,0,,2, tatatata QPSS −−= −−−−    
for a > 0        (35) 

0,,2,0,0,1,2,10,0,1,2,11,0,,2, )1( tatatata QPSS −−−− −=      for a > 0       (36) 

)1))(1()1(( 1,,2,1,1,1,2,11,1,1,2,11,0,1,2,11,0,1,2,11,1,,2, tatatatatata QPSPSS −−+−= −−−−−−−−  
for a > 0  (37)   

1,,2,1,1,1,2,11,1,1,2,11,0,1,2,11,0,1,2,12,1,,2, ))1()1(( tatatatatata QPSPSS −−−−−−−− −+−=
      

for a > 0    (38)   

)1(()1(( 2,2,1,2,12,2,1,2,12,1,1,2,12,1,1,2,12,2,,2, −−−−−−−− −+−= tatatatata PSPSS          for a > 0        (39)  
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Figure 3: Elaboration of panel 2 of Figure 1 

 

 

Note: Sa,i,t,m,* in panel 1 is partitioned into Saitmm and Saitmn (where n = m +1) in panel 2. 
The asterisk in Sa,i,t,m,* indicates that the ending child mortality state can be m or m+1. 
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Formulae are based on the simplifying assumption that all births occur at the start 
of a one-year age or duration interval. This assumption allows more than one birth to 
occur at the same age a in the global life table. This is consistent with the way that the 
Paitmn are estimated from separate CLL models for the various parity transitions, which 
makes it possible for a woman to experience multiple events in a one-year age interval 
(but not in a one-year duration interval, since t immediately changes to zero after the first 
event in the duration interval). The implications of this simplifying assumption are 
discussed in more detail in Retherford et al. (2010b).  
  

Once the global life table is constructed, the total fertility rate is calculated as 
 
TFR = (∑fa,i,t,m,n)/1,000        (40) 

 
In this equation the summation is over a, i, t, m, and n.  

 
TFR can also be calculated by collapsing the right side of equation (40) over a, t, 

m, and n, resulting in a sum of parity-specific terms that can be written as 
 
TFR = (B0 + B1 + B2 + … + B14)/1,000      (41) 
 

where B0 pertains to first births (i.e., births to zero-parity women), B1 pertains to second 
births, and so on.  

 
Parity progression ratios can then be calculated as 
 
p0= B0/1,000          (42) 
 
pi = Bi/Bi−1      i = 1, 2, 3,…, 14       (43) 

 
where p0 is the PPR from woman’s own birth to her first birth, p1  is the PPR from first 
birth to second birth, and so on. 

 
ASFRs for single-year age groups, Fa, are calculated for each value of a by 

summing the births faitmn over i, t, m, and n and dividing the result by 1,000. If desired, 
ASFRs for 5-year age groups can be obtained by summing the single-year Fa within a 
five-year age group and dividing the sum by five. 

 
One can calculate numbers of births specific for parity and duration in parity, Bit, 

by aggregating the faitmn over a, m, and n. One then computes mean and median closed 
birth intervals by birth order as  

 
Mean closed birth interval between ith and (i+1)th birth = ∑[(Bit/Bi)(t)]   (44)                
 

where the summation is over t. 
 
Median closed birth interval between ith and (i+1)th birth =   
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    [t, such that (∑Bit)/Bi = 0.5]    (45) 

 
where the summation ranges over duration in parity from 0 to t.  

 
Mean and median ages at childbearing are calculated as 
 
Mean age at childbearing = ∑[(Fa/TFR)(a)] + 10     (46) 
 

where the summation is over a. 
 

Median age at childbearing = [a, such that ∑(Fa)/TFR = 0.5] + 10  (47) 
 
where the summation ranges over age from 0 to a. 
 
 Median age at childbearing for women of parity i bearing an (i+1)th birth = 
 

   [a, such that (∑Bai)/Bi = 0.5] + 10   (48) 
 
where the summation ranges over age from 0 to a. 

 
It might seem that the formulae for mean closed birth interval and mean age at 

childbearing should add 0.5 to duration t or age a, since the formulae are for discrete one-
year time intervals. It turns out, however, that t should be used instead of t+0.5 and a 
should be used instead of a+0.5, because of the way that the duration and age variables 
are constructed (Retherford 2010a, 2010b). 

 
Partitioning Factor 
 
A major difference between the original global life table (GLT) and the global life table 
that includes child mortality (GLTWCM), is that women in some mortality transitions of 
the new global life table are partitioned into two groups, the first of which does not 
experience a child death over the following one-year interval and the second of which 
does experience a child death over this interval. In order to partition women at the start of 
each group, one needs a partitioning factor, denoted earlier as Qaitm, defined as the 
proportion who experience a child death over the interval. The proportion who do not 
experience a child death is then 1−Qaitm. This section explains how Qaitm is calculated. 
 
 Two approaches for calculating Qaitm were tested. For ease of exposition, these 
two approaches are referred to here as the “overall probability” approach and the “logit 
model” approach. The overall probability approach uses the overall probability of failure 
(i.e., next birth) at age a, parity i, duration t, and child mortality state m, as part of the 
estimation procedure. The logit model approach regresses change in mortality state over 
the interval (yes or no) on age, parity, duration in parity, child mortality state at the start 
of the interval, and the socioeconomic variables. The fitted logit model yields a predicted 
proportion of women who experience a child death over the interval for specified values 
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of the predictor variables. For reasons that will become clear shortly, the overall 
probability approach is preferred over the logit model approach. 
 
 “Overall Probability Approach” to Calculating the Partitioning Factor 
 
Saitm* indicates number of women at age a, parity i, duration in parity t, and child 
mortality state m in the new global life table for a particular set of values of the 
socioeconomic characteristics. The asterisk indicates that child mortality state at the end 
of a one-year transition can be either m or m+1. Saitm* is partitioned into two groups, the 
first of which remains in child mortality state m at the end of a one-year transition, and 
the second of which experiences a change in child mortality state to m+1 at the end of the 
one-year transition. (Recall again that child mortality is a lagged variable, so that the age 
interval is actually a−1 to a.) 
 

By way of illustration, suppose that there are 100 women age a, parity i, and 
duration t in child mortality state 2 (Mm =  M2) at the start of a one-year interval a to a+1 
and t to t+1. I.e., Saitm*  = Sa,i,t,2,* = 100. During the interval a to a+1 and t to t+1, some of 
these 100 women will remain in the same child mortality state M2 and some will move to 
the next child mortality state Mm+1 = M3. The number of women in the first group is 
denoted Sa,i,t,2,2 . The probability of having a birth for a woman in this group is Pa,i,t,2,2. 
The number of women in the second group, which changes child mortality state from M2 
to M3, is denoted Sa,i,t,2,3. The probability of having a next birth for a woman in this group 
is Pa,i,t,2,3. It follows that Sa,i,t,2,* = Sa,i,t,2,2 + Sa,i,t,2,3. The partitioning factor Qa,i,t,2 (to be 
calculated) indicates the proportion of Sa,i,t,2,*  who end up in Sa,i,t,2,3. 

 
The issue, then, is how to divide the Sa,i,t,2,*  women into the two groups Sa,i,t,2,2 and 

Sa,i,t,2,3. Define the overall probability of transition naitmP , where n  is the average child 
mortality state (mean number of previous child deaths as of one year ago) at age a and 
duration t (actually age a−1 and duration t−1). n  is always equal to or greater than m and 
equal to or less than n. The calculation is best explained by an example, depicted in 
Figure 4, where n is a number between 2 and 3.  

 
The following equations are generated from the figure: 

 
Sa,i,t,2,*  =  Sa,i,t,2,2 + Sa,i,t,2,3                                                      (49) 

 
Sa+1,i,t+1,2,* = Sa,i,t,2,2(1−Pa,i,t,2,2)                (50) 

 
Sa+1,i,t+1,3,* = Sa,i,t,2,3(1−Pa,i,t,2,3)                (51) 

 
It is assumed that 
 

,*3,1,,1,*2,1,,1,2,1,,1 ++++++
+= tiatiantia

SSS                              (52) 
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Figure 4: Logic of the “overall probability approach” for calculating the partitioning factor 

 

 
 
Equation (52) states that the number of women who move to the next age and 

duration in parity, regardless of their child mortality state, equals the sum of the number 
of women who remain in child mortality state m = 2 and those who move to child 
mortality state m+1 = 3. When equations (49) and (52) are solved simultaneously, using 
elements from equations (50) and (51), the numbers of women Sa,i,t,,2,2 and Sa,i,t,2,3 are 
estimated as 
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From equation (54) it is evident that the partitioning factor can be calculated as  
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naitmP  is estimated by substituting values of age A (where A = a−t+11) into the 

CLL model equation for each parity transition. Mean child mortality state n  at the end of 
a one-year transition is specific for age a, parity i, duration t, starting child mortality state 
m, and values of the socioeconomic variables. For example, to estimate

n
P

,2,4,3,25
, one 

substitutes A = 31, i = 3, t = 5, D1 = 2, and D2 equal to the computed value of n  into the 
appropriate CLL equation ((1), (2), or (3)). Since the starting child mortality state in this 
example is 2, the mean of D2, specified by age, parity, starting child mortality state, and 
values of the socioeconomic variables, is a number between 2 and 3. 

  
Formula (55) works well as long as the two probabilities in the denominator of the 

right side of equation (55) are not equal. When equal, the formula is undefined, so that 

Sa,i,t,2,* = Sa,i,t,2,2 + Sa,i,t,2,3 = 100 

Sa+1,i,t+1,2,*=Sa,i,t,2,2(1-Pa,i,t,2,2) 

   Pa,i,t,2,2 

Sa+1,i,t+1,3,*=Sa,i,t,2,3(1-Pa,i,t,2,3) 

Pa,i,t,2,3 

Sa,i,t,2,* = 100 
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one needs to find another solution to partition women into two groups. The logit model 
approach is used to do this.   
 
“Logit Model Approach” to Calculating the Partitioning Factor  
 
Another way to partition women into two groups is the logit model approach. In this 
approach, for any given parity transition, one uses the same data set that is used to 
estimate the CLL model for that transition. The individual-level response variable in the 
logit regression is a dummy variable indicating whether a child death occurs in the 
following one-year interval (actually the previous one-year interval, since the child 
mortality variables are lagged). This dummy variable, denoted ΔD (equal to D2−D1), is 
defined for each person-year observation in the data set. Predictor variables in the logit 
model include age, duration in parity, starting child mortality D1, and socioeconomic 
variables, if any. The logit model is estimated for each parity transition higher than 0–1, 
where child mortality can occur.  
 

The probability form of the logit model is: 

)( 1
22

1
1

gSESfDeAdActbtaD
e

P
++++++−Δ

+
=                  (56) 

 
where P∆D is the probability of a child death during the one-year interval, SES is a 
column vector of socioeconomic predictors, and g is a row vector of coefficients. Qaitm 
for particular values of a, i, t, m, and the socioeconomic variables equals the model-
predicted value of PΔD for specified values of these same variables. The value of i is 
determined by which parity-specific CLL model is under consideration. 
 

The overall probability approach is preferred over the logit model approach, 
because, in the former approach, all probabilities needed to calculate the partitioning 
factor are derived from the underlying CLL models, so that the Qaitm values and the 
various probabilities used in calculating the global life table are internally consistent. 
Because of this internal consistency, tests on real data indicate that the overall probability 
approach works better than the logit model approach for estimating the partitioning factor 
(Eini-Zinab 2010a). For these reasons, the logit model approach is used here only when 
the denominator of the right side of equation (55) is zero. In almost all cases it is non-
zero, so that the logit model approach is seldom used in any given application to real 
data.  

 
Estimating Child Mortality Rates from the Global Life Table 
 
The global life table that incorporates child mortality allows calculation of child mortality 
rates. The number of changes in child mortality state is the same as the number of child 
deaths lagged by one year. Over each one-year age interval, only one change in child 
mortality state (i.e., one one-year-lagged child death) can occur. This allows calculation 
of child mortality rates by age of woman in place of the more usual mortality rates by age 
of child. Child deaths can be at any age of child, no matter how old. 
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In the global life table women who change their starting child mortality state are 
located at Saitmn, where n = m + 1. The following formulae calculate child mortality rates 
by age of woman and the overall mean number of child deaths per woman: 

 
 Da = (∑Saitmn)/1,000        (57) 
 
where Da (not to be confused with the variables D1 and D2 in the underlying CLL 
models) is the child mortality rate by woman’s age a, with child deaths lagged by one 
year. The summation is over i, t, m, and n, but only for cases where n = m + 1. The 
denominator of this single-year rate is always 1,000, regardless of the value of a, because 
although the global life table allows for child mortality, it assumes no mortality of 
women.  
  
 If the summation in equation (57) is also over a, the result is total number of child 
deaths per woman: 
 
 D = (∑Saitmn)/1,000        (58) 
 
The latter of these two child mortality measures is affected by the level of fertility as well 
as by conventionally measured child mortality by age of child. The reason is that the 
more children a woman has, the more likely she is to experience a child death; thus the 
higher the level of fertility, the higher the value of D.  

 
Estimating the Extent of Replacement of Dead Children from the Global Life Table 
 
One can construct a global life table using the Paitmn approach by setting the partitioning 
factor equal to zero. Setting the partitioning factor to zero means that no one in the global 
life table experiences a change in child mortality state; i.e., there are no child deaths, so 
that it is always true that Sa,i,t,m,n = Sa,i,t,0,0. This global life table is referred to here as the 
child-mortality-effect-free global life table, denoted as GLTNCM. (The word “effect” is 
retained because we are ultimately interested in the effect of child mortality on fertility.) 
The subscript NCM stands for “no child mortality effect”. The child-mortality-effect-free 
GLT is constructed by using Pa,i,t,0,0 estimated from CLL models that include the 
variables D1 and D2, with non-zero child mortality taken into account.  

 
All measures derived from the GLTNCM are also child-mortality-effect-free. All of 

these measures can then be compared with corresponding measures calculated from the 
global life table that includes child mortality, in which the partitioning factors are not set 
to zero. The global life table that includes child mortality is referred to here as the child-
mortality-effect-present GLT (denoted as GLTWCM, where the subscript WCM stands for 
“with child mortality effect”). Any difference between the two GLTs is attributable to the 
effect of child mortality on fertility.  

 
Several replacement measures can be constructed. One of them is 
 
ΔTFR = TFRWCM − TFRNCM       (59) 
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ΔTFR depends on the magnitude of child mortality, as measured by mean number of 
child deaths per woman. The higher the mean number of child deaths per woman, the 
higher the ΔTFR. ΔTFR is the additive effect of all child deaths per woman on the TFR. 
A related measure that could be used is the proportional increase in TFR due to all child 
deaths, calculated as [(TFRWCM−TFRNCM)/TFRNCM]. 

 
 Our preferred measure, however, is what is referred to here as the “replacement 
rate,” denoted by R. R is defined as the difference between the child-mortality-effect-
present TFR and the child-mortality-effect-free TFR, divided by the total number of child 
deaths per woman, D, in the global life table (GLTWCM): 
 

R = 
D
TFRΔ          (60) 

 
R indicates the effect of a one-unit increase in number of child deaths per woman (all 
women, not just mothers) on the TFR. As such, R is a measure of the extent to which a 
dead child is replaced by another birth.  
 
 Because all of the above-mentioned replacement measures are derived from the 
global life table, and because global life table is multivariate, all the replacement 
measures are also multivariate, in the sense that they can be tabulated by values or 
categories of one socioeconomic variable while holding constant the other socioeconomic 
variables included in the underlying CLL models. 
 

A seemingly illogical property of the global life table, in both the Pait and Paitmn 
methods, is that the total number of life table women at any given age, Sa, does not equal 
the starting radix of 1,000 women, due to the global life table property that a woman can 
experience more than one birth in any given one-year age interval. For reasons explained 
by Retherford et al. (2010b), however, this feature of the global life table does not bias 
the estimates of the fertility and child mortality measures in this paper.  

 
VALIDATION AND APPLICATION OF THE Paitmn METHOD 

This section tests the validity of the Paitmn method by comparing, where possible, selected 
fertility and child mortality measures derived by the Paitmn method with corresponding 
estimates derived by the birth history method, the Pit method, and the Pait method. The 
Paitmn methodology is considered valid if, for real cohorts, the estimates derived by the 
various methods are close to the same.  
 

This validation procedure is applied to not only cohort data but also period data 
from India’s first National Family Health Survey (NFHS-1), conducted in 1992–93. The 
cohort analysis pertains to the birth and child-mortality histories of all women age 45–49 
at time of survey. The period analysis pertains to the fertility and child mortality 
experienced by all women age 10–49 during the five-year period preceding the survey 
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(1988 to 1992)6. In the case where socioeconomic variables are omitted from the 
underlying CLL models, it is expected that the estimates derived by the various methods 
will agree closely when based on cohort data. As will be explained later, it is not 
expected that the estimates derived by the various methods will necessarily be the same 
in the case of period data, however. Following validation of the methodology using 
NHFS-1 data, the methodology is applied more extensively to not only NFHS-1 data but 
also NFHS-2 and NFHS-3 data. 
 

The socioeconomic predictors included in both the validation and the application 
of the Paitmn method are the following: Residence is represented by a dummy variable 
URB (urban), with rural as the reference category. Education is represented by two 
dummy variables LOW (low education) and HIG (high education), with illiterate as the 
reference category. Low education comprises some primary or completed primary 
education, and high education comprises all levels of education beyond primary. Wealth, 
based on a wealth index constructed by Macro International (Rutstein and Johnson, 2004) 
is represented by two dummy variables, MWI (denoting medium wealth) and HWI 
(denoting high wealth), with low wealth as the reference category. Break points in the 
wealth index for low, medium, and high are chosen with the goal (imperfectly achieved) 
of having one-third of the women in each of the three categories. The break points vary 
from one survey to the next. Religion is represented by the dummy variable HIN (Hindu), 
with “other” as the reference category. When HIN is used as a control variable, “other” 
includes all non-Hindu women. When HIN is used as the main socioeconomic predictor 
variable, “other” includes Muslims only. Scheduled caste/scheduled tribe (SC/ST) is 
represented by the dummy variable SCT (yes, no), with “no” as the reference category. 
Region is a categorical variable which includes North, East, South, and West, represented 
by the dummy variables NOR, EAS, and SOU, with West as the reference category. North 
includes the states of Haryana, Himachal Pradesh, Jammu, Madhya Pradesh, Punjab, 
Rajasthan, Uttar Pradesh, New Delhi, Uttaranchal (only in NFHS-3), and Chhattisgarh 
(only in NFHS-3). East includes the states of Assam, Bihar, Manipur, Meghalaya, 
Mizoram, Nagaland, Orissa, West Bengal, Arunachal Pradesh, Tripura, Sikkim (only in 
NFHS-2 and NFHS-3), and Jharkhand (only in NFHS-3). South includes the states of 
Andhra Pradesh, Karnataka, Kerala, and Tamil Nadu. West includes the states of Goa, 
Gujarat, and Maharashtra. Except for Sikkim, the states included only in NFHS-2 or 
NFHS-3 are new states that have been split off from existing states. Sikkim could not be 
included in NFHS-1 because of political disturbances. 

 
Table 1 shows how sample women are distributed on the socioeconomic 

characteristics in each of the three surveys. The table shows increasing proportions with 
urban residence, high education, and SC/ST membership over the three surveys. The 
proportions by religion and region are fairly stable over the three surveys. The 
                                                 
6 Calendar years in this analysis do not exactly match calendar years that run from January 1 to December 
31. Instead, calendar years are demarcated by counting by increments of 12 months backward from the 
survey date for each respondent, starting with the first complete survey month for that respondent. In the 
case of the 1992-93 NFHS-1, for example, “1992” in the present analysis refers to the first 12 complete 
months preceding date of interview. The second 12 months preceding date of interview are labeled 1991, 
and so on. The month in which the interview took place is not included in the analysis because it is an 
incomplete month for most women. 
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proportions in the wealth categories are difficult to interpret because the wealth 
categories are defined somewhat differently in each survey, with the goal of keeping the 
proportion in each wealth category close to one-third. 

         Women age 45-49         Women age 10-49
Predictor variable NFHS-1 NFHS-2 NFHS-3 NFHS-1 NFHS-2 NFHS-3

Residence
Urban 28 30 35 28 28 32
Rural  72 70 66 72 72 68

Education
Illiterate 71 61 57 50 41 35
Low 16 17 16 26 23 22
High 13 22 26 24 36 43

Wealth Index
Low 39 36 39 41 41 45
Medium 32 31 30 31 32 31
High 29 32 31 28 27 24

Religion
Hindu 83 83 83 81 80 80
Other 17 17 17 19 20 20

SC/ST
Yes 20 25 26 20 27 28
No 80 75 74 80 73 72

Region
North 36 33 35 36 36 38
East 25 25 25 26 26 27
South 25 29 26 23 24 21
West 15 14 14 14 15 14

No. of women 8,592 8,661 9,807 144,626 149,016 153,348

Table 1: Percentaged distribution of sample women by socioeconomic variables 
included in the analysis

Notes: Women 45-49 are the basis of the cohort analysis. Women 10-49 are the basis of the 
period analysis. The "other" category for religion includes all non-Hindu women. Numbers of 
missing cases are negligible except for the Scheduled Caste/Scheduled Tribe (SC/ST) 
variable in the NFHS-2 and NFHS-3 surveys; about 3 percent of women in these two surveys
having missing information on the SC/St variable. The percentaged distributions exclude 
missing cases. The calculation of percentages incorporates individual-level weights as 
specified in each of the three surveys. 

 
Table 2 shows the expanded person-year data sets. The expanded data sets for the 

cohort analysis were created from women age 45–49 at time of survey, and the expanded 
data sets for the period analysis were created from women age 10–49 at time of survey. 
The numbers of women from whom expanded data sets were created are shown in the 
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last row of Table 1. In the case of open parity intervals, some of the person-year data sets 
shown in Table 2 were aggregated, as explained earlier. 

 
The CLL model for the Paitmn method with all socioeconomic predictors for parity 

transitions higher than 0–1 is: 
 

P = 1− exp{−exp[a + b1T1 + b2T2 + ... + b9T9 + A(c1+c2t+c3t2) + A2(d1+d2t+d3t2)  
      + D1(e1+e2t+e3t2) + D2(f1+f2t+f3t2) +  URB(g1+ g2t+ g3t2) + LOW(h1+ h2t+ h3t2)  

+  HIG(j1+ j2t+ j3t2) +  HIN(k1+k2t+k3t2) + SCT(l1+l2t+l3t2)  
+ MWI(m1+m2t+m3t2) + HWI(n1+n2t+n3t2) + NOR(o1+o2t+o3t2)   
+ EAS(q1+q2t+q3t2) + SOU(r1+r2t+r3t2) + D1(e4A + e5A2) + D2(f4A + f5A2)   
+ URB(g4A + g5A2) + LOW(h4A + h5A2) + HIG(j4A + j5A2) +  HIN(k4A+k5A2)  
+ SCT(l4A+l5A2) + MWI(m4A+m5A2) + HWI(n4A+n5A2) + NOR(o4A+o5A2)  
+ EAS(q4A+q5A2) + SOU(r4A+r5A2) + D1(s1URB + s2LOW + s3HIG + s4HIN  
+ s5SCT + s6MWI + s7HWI + s8NOR + s9EAS + s10SOU) + (u1URB.LOW  
+ u2URB.HIG + u3URB.HIN + u4URB.SCT + u6URB.MWI + u7URB.HWI  
+ u8URB.NOR + u9URB.EAS + u10URB.SOU + u11LOW.HIN + u12HIG.HIN  
+ u13LOW.SCT + u14HIG.SCT + u15LOW.MWI + u16HIG.MWI + u17LOW.HWI  
+ u18HIG.HWI + u19LOW.NOR + u20HIG.NOR + u21LOW.EAS + u22HIG.EAS  
+ u23LOW.SOU + u24HIG.SOU + u25HIN.SCT + u26HIN.MWI + u27HIN.HWI  
+ u28HIN.NOR + u29HIN.EAS + u30HIN.SOU + u31MWI.NOR + u32HWI.NOR  
+ u33MWI.EAS + u34HWI.EAS + u35MWI.SOU + u36HWI.SOU)]}                 (61) 
 

where, URB, LOW, HIG, HIN,…, SOU are the socioeconomic predictors defined above 
and a, bi, ci, di,…, ui are coefficients to be estimated. The CLL model for the 0–1 
transition does not include A (age at starting parity) and D1 and D2 (the child mortality 
variables). The CLL model for the open parity interval is similar to equation (61), except 
that it includes the additional predictors I and I2, as explained earlier. (The CLL models 
for the Pait method are similar to the CLL models for the Paitmn method, except that the 
CLL models for the Pait method exclude the child mortality variables D1 and D2. The 
CLL models for the Pit method exclude the variable A as well.) 
  

One expects estimates derived by the Paitmn method to agree closely with 
estimates derived by the other methods when the estimates are based on cohort data. 
When using period data, however, one is dealing with a synthetic cohort instead of a real 
cohort, which makes comparisons between estimates based on the birth history method 
and estimates based on the life table methods more complicated. When using period data, 
one expects the biggest differences to occur between estimates based on the birth history 
method and estimates based on either of the two global life table methods (the Pait 
method and the Paitmn method). The reason is that, in a global life table at any given age, 
the distribution of women by parity and duration in parity (in the Pait method) or by 
parity, duration in parity, and the two child mortality states at the beginning and end of 
the age interval a to a+1 (in the Paitmn method) differs from the distribution of women by 
these variables in the actual population. Differences in age structure do not account for 
any of the differences, because the TFR does not depend on the age structure of the 
population, regardless of which method is used to calculate the TFR.  
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Cohort Analysis Period Analysis
Parity NFHS NFHS
transition 1 2 3 1 2 3

0-1 102,787 104,924 124,947 316,308 327,129 276,090
 1-2 33,596 33,421 38,979 69,399 69,493 75,315
 2-3 34,747 35,872 44,941 73,472 77,659 86,021
 3-4 33,946 34,850 40,226 63,108 61,953 59,190
 4-5 30,992 29,823 29,615 45,562 42,701 36,238
 5-6 24,580 21,682 18,913 30,871 26,995 22,628
 6-7 18,608 15,917 11,983 20,041 17,136 13,451
 7-8 12,814 9,868 7,067 12,433 10,172 8,100
 8-9 7,863 6,086 4,101 7,523 5,838 4,725
 9-10 4,324 3,369 2,234 4,074 3,209 2,659
 10-11 2,306 1,645 1,119 2,021 1,864 1,243
 11-12 1,007 711 547 918 858 555
 12-13 330 289 181 370 273 243
 13-14 98 78 22 106 79 40
 14-15 47 29 6 38 13 14

Table 2: Expanded sample sizes

Notes: Expanded sample sizes are numbers of person-year observations. 
Each cell in the table corresponds to a separate data set, for which the 
sample size (number of person-year observations) is shown. There are 90 
data sets. For each data set, weighted and unweighted sample sizes are the 
same. 0-1 denotes the transition from a woman's own birth to first birth, and 1-
2 denotes the transition from first birth to second birth. In the period analysis, 
periods are the five-year period before each survey. In the cohort analysis, 
cohorts are defined as women age 45-49 at the time of survey. 

 
Validation of the Paitmn Method 

 
By way of validating the Paitmn methodology, selected measures of fertility and child 
mortality are calculated using each of the four methods―the birth history, Pit, Pait, and 
Paitmn methods―insofar as this is possible. In order to increase the precision of 
comparisons between estimates derived by the birth history method and estimates derived 
by Pit, Pait, and Paitmn methods, the data set for the birth history method is constructed in 
the same way as the data set for the other three methods. For example, all first births after 
age 40 and next births after 10 years of duration in parity are eliminated from both data 
sets.  
 

Table 3 shows unadjusted and adjusted TFRs derived by the birth history, Pit, Pait, 
and Paitmn methods applied to both cohort and period data from NFHS-1. With the birth 
history estimates of the TFR as the base of comparison, the table shows that all three life 
table methods (Pit, Pait, and Paitmn ) slightly underestimate the unadjusted cohort TFRPPR 
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(the birth history-derived TFRPPR being a more appropriate basis for comparison than the 
birth history-derived TFRASFR, because the Pit, Pait, and Paitmn methods are also 
fundamentally PPR-based.) One expects some differences, because the Pit, Pait, and Paitmn 
methods all impose functional forms on the data, which the birth history method does not 
impose. In the case of adjusted estimates, those derived by the Pit and Pait methods agree 
closely, while those derived by the Paitmn method are somewhat lower. Some differences 
among the adjusted estimates are expected, because of the artificial way in which the 
socioeconomic variables are controlled, combined with the non-linear nature of the Pit, 
Pait, and Paitmn models. 

 
Figures 5–10 supplement the above unadjusted cohort estimates of the TFR with 

additional detail pertaining other cohort fertility measures. Figure 5 shows that the Paitmn-
derived unadjusted estimates of cohort PPRs agree closely with corresponding estimates 
derived by the birth history, Pit, and Pait methods, especially at the lower parities. The 
four methods produce slightly different results at higher parities where the expanded 
sample sizes are small. Figure 6 shows that the Paitmn-derived unadjusted estimates of 
cohort ASFRs agree closely with the birth-history and Pait-derived estimates. Figures 7 
and 8 show that the Paitmn-derived unadjusted cohort estimates of mean and median age at 
childbearing by child’s birth order agree closely with corresponding estimates derived by 
the birth history and Pait methods. In the case of all births (regardless of child’s birth 
order), the various unadjusted cohort estimates of mean age at childbearing 
approximately coincide, as do the various unadjusted cohort estimates of median age at 
childbearing. Figures 9 and 10 show that the Paitmn-derived unadjusted cohort estimates of 
mean and median closed birth intervals agree closely with corresponding estimates 
derived by the birth history, Pit, and Pait methods for all but the very high-order parity 
transitions where numbers of cases are small. 

 
In the case of period estimates, Table 3 shows that the estimate of the period TFR 

derived by the Pit method is closest to the estimate of the TFR derived by the birth history 
estimate. This is not surprising, because in this case the birth history method is Feeney’s 
PPR-based method of estimating a period TFR (Feeney and Yu 1987), and because the 
Pit method is a multivariate generalization of Feeney’s PPR-based method. Once age is 
introduced into the global life tables derived by the Pait and Paitmn methods, the estimate 
of the period TFR drops substantially. As already mentioned, this drop occurs apparently 
because, at any given age in the global life table, the distribution of women by parity, 
duration in parity, and the two child mortality states at the beginning and end of the age 
interval a to a+1differs between the actual population and the global life table population.  

 
Figures 11–16 supplement the estimates of the unadjusted period TFR in Table 3 

with additional detail for the other fertility measures. As expected, Figure 11 shows that 
the Pit-derived estimates of unadjusted period PPRs agree closely with corresponding 
birth history estimates derived by Feeney’s method, even at the higher parities. By 
contrast, the Pait-derived and Paitmn-derived unadjusted estimates of PPRs, though in close 
agreement with each other, are much lower than those derived by the Pit method or by 
Feeney’s method, except at the very high parities. These differences parallel the 
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Birth History P it  method P ait  method P aitmn  method 

       COHORT ANALYSIS
TFRPPR

     Unadjusted 5.03 4.93 4.96 4.89
     Adjusted N/A 4.82 4.85 4.69
TFRASFR

     Unadjusted 5.09 N/A 4.96 4.89
     Adjusted N/A N/A 4.85 4.69
CEB 5.03

        PERIOD ANALYSIS
TFRPPR

     Unadjusted 3.53 3.50 3.19 3.13
     Adjusted N/A 3.49 3.19 3.16
TFRASFR

     Unadjusted 3.44 N/A 3.19 3.13
     Adjusted N/A N/A 3.19 3.16

Table 3: Comparison of total fertility rates derived by the birth history, P it , 
P ait , and P aitmn  methods: NFHS-1

Notes: In the cohort case, what is labeled as the birth history method is simply the 
average number of children ever born in the age group 45-49. In the period case, what 
is labeled as the birth history method is actually Feeney's PPR-based method (Feeney 
and Yu 1987). In the case of the P it , P ait , and P aitmn  methods, "unadjusted" means 
that no socioeconomic predictor variables are included in the underlying CLL models 
(but at least some of the basic predictor variables―duration in parity, age at starting 
parity, and the two child mortality variables D 1  and D 2―are included, depending on 
the method). "Adjusted" means that the socioeconomic variables shown in Table 1 are 
included in the set of predictor variables in the underlying CLL models, and that these 
socioeconomic variables are held constant at their duration-specific mean values in 
the expanded data set pertaining to the CLL model for any particular parity transition. 
The predictor variables in the CLL models underlying the adjusted estimates 
additionally include duration in parity in the case of the P it  method, both duration in 
parity and age at starting parity in the case of the P ait  method, and both duration in 
parity, age at starting parity, and the two child mortality variables D 1  and D 2  in the 
case of the P aitmn  method. These variables are allowed to vary while the 
socioeconomic variables are held constant. 
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Figure 5: Comparison of unadjusted PPRs derived by the birth history, P it , P ait  , and P aitmn methods: Women 
age 45-49, cohort analysis, NFHS-1
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Figure 6: Comparison of unadjusted ASFRs derived by the birth history, P ait , and P aitmn methods: Women 
age 45-49, cohort analysis, NFHS-1

0

50

100

150

200

250

300

350

10‐14 15‐19 20‐24 25‐29 30‐34 35‐39 40‐44 45‐49

A
SF

R
 (p

er
 1

00
0 

w
om

en
) 

Birth History Pait Paitmn

 

 

35 



 36

Figure 7: Comparison of unadjusted mean age at childbearing  derived by the birth history, P ait , and P aitmn 

methods: Women age 45-49, cohort analysis, NFHS-1
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Figure 8: Comparison of unadjusted median age at childbearing derived by the birth history, P ait , and P aitmn 

methods: Women 45-49, cohort analysis, NFHS-1
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Figure 9: Comparison of unadjusted mean closed birth intervals derived by the birth history, P it , P ait , and 
P aitmn  methods: Women age 45-49, cohort analysis, NFHS-1
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Figure 10: Comparison of unadjusted median closed birth intervals derived by the birth history, P it , P ait , and 
P aitmn  methods: Women age 45-49, cohort analysis, NFHS-1
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unadjusted period TFR differences in Table 3. Figure 12 shows that the Pait-derived and 
Paitmn-derived unadjusted estimates of period ASFRs are lower than conventional birth 
history estimates of period ASFRs, except at age 25–29. (It is not clear why 25–29 is an 
exception.) Figures 13 and 14 show that the Pait-derived and Paitmn-derived unadjusted 
estimates of mean and median ages at childbearing are higher than corresponding 
estimates derived by the conventional birth history method. Figures 15 and 16 show that 
the unadjusted period estimates of mean and median closed birth intervals derived from 
birth history, Pit, Pait, and Paitmn methods agree closely, except at the very high parities.  

 
Table 4 compares unadjusted child mortality measures and fertility measures 

derived by the birth history method and the Paitmn method for both cohort and period data 
from NFHS-1. As the table indicates, the two methods yield numbers of child deaths per 
woman (5Da and D) that agree more closely for cohort data than for period data, the 
reason being that, in the period case but not the cohort case, the distribution of women by 
age, parity, duration in parity, and the two lagged child mortality variables differs 
between the synthetic global life table population of women and the actual population of 
women. This difference in the distribution of women tends to result in fewer births in the 
global life table population of women than in the actual population of women (Retherford 
et al. 2010b). Because of fewer births, there are also fewer child deaths. 

 
In the cohort case but not in the period case, perfect model fits to the data 

(including not only the underlying CLL models but also the partitioning factors Qaitm) 
should result in perfect agreement between the birth history estimates and the Paitmn-
derived estimates of 5Da, D, and mean and median Ad. In the cohort case in Table 4, the 
Paitmn-derived estimates of 5Da and D are slightly lower than the corresponding birth 
history estimates (by 0.09 child death per woman in the case of D), and the Paitmn-derived 
estimates of mean Ad and median Ad are somewhat higher (by 0.04 year and 0.07 year, 
respectively) than the corresponding birth history estimates. These comparisons show 
that the fit of the underlying CLL models in the Paitmn method and the partitioning factors 
Qaitm to the cohort data is fairly close but not perfect. Figure 17 shows that most of the 
underestimation of child deaths per woman per year by the Paitmn method occurs at 
woman’s ages 20–24 and 25–29. 

 
As already mentioned, in the period case in Table 4 one expects the Paitmn-derived 

estimates of 5Da and D to be lower than the corresponding birth history estimates. Table 4 
and Figure 18 show how much lower in the case of NFHS-1. Table 4 shows that the 
Paitmn-derived period estimate of D is about half as large as the corresponding birth 
history estimate of D that the birth history method generates for the period data. Table 4 
and Figure 18 show that this difference, part of which is expected and part of which 
probably results from underestimation of child deaths (judging from the cohort results), 
occurs at all ages of women. By contrast, Table 4 shows that the Paitmn-derived and birth 
history-derived estimates of mean and median Ad do not differ noticeably more in the 
period case than in the cohort case. In the case of median Ad, the agreement is even closer 
in the period case than in the cohort case. 
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Figure 11: Comparison of unadjusted PPRs derived by the birth history, P it   P ait  , and P aitmn  methods: 
Women age 10-49, period analysis for 1988-92, NFHS-1
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Figure 12: Comparison of unadjusted ASFRs derived by the birth history, P ait , and P aitmn  methods: Women 
age 10-49, period analysis for 1988-92, NFHS-1
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Figure 13: Comparison of unadjusted mean age at childbearing derived by the birth history, P ait , and P aitmn 

methods: Women age 10-49, period analysis for 1988-92, NFHS-1

18.0

23.0

28.0

33.0

38.0

43.0

48.0

1st birth 

2nd birth 

3rd birth 

4th birth 

5th birth 

6th birth 

7th birth 

8th birth 

9th birth 

10th birth 

11th birth 

12th birth 

13th birth 

14th birth 

15th birth 

All births

M
ea
n 
ag
e 
at
 c
hi
ld
be

ar
in
g 
(y
ea
rs
)

Birth History Pait Paitmn

Note: In the case of all births, the three points coincide, to a close approximation. 

43 



 44

 

Figure 14: Comparison of unadjusted median age at childbearing derived by the birth history, P ait , and P aitmn 

methods: Women age 10-49, period analysis for 1988-92, NFHS-1
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Figure 15: Comparison of unadjusted mean closed birth intervals derived by the P it , P ait , and P aitmn 

methods:  Women age 10-49, period analysis for 1988-92, NFHS-1
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Figure 16: Comparison of unadjusted median closed birth intervals derived by the P it , P ait , and P aitmn 

methods: Women age 10-49, period analysis for 1988-92, NFHS-1

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

1‐2 2‐3 3‐4 4‐5 5‐6 6‐7 7‐8 8‐9 9‐10 10‐11 11‐12 12‐13 13‐14 14‐15

M
ed

ia
n 
CB

I (
ye
ar
s)

Pit Pait Paitmn

 

46 



 47

                COHORT           PERIOD
Birth P aitmn Birth P aitmn

 Measure History Method History Method

 5 D a

10-14 0 0 0 0
15-19 16 13 7 4
20-24 48 40 24 15
25-29 53 48 27 17
30-34 42 41 21 12
35-39 24 28 15 7
40-44 14 15 10 3
45-49 8 6 8 1

 D 1.03 0.94 0.56 0.29

 Mean A d 29.2 29.6 29.0 28.5
 Median A d 28.7 29.4 27.9 28.1

 TFRWCM 4.89 3.13
 TFRNCM 4.57 2.98
 R 0.34 0.51

Table 4: Comparison of unadjusted child mortality 
measures derived by the birth history and P aitmn 

methods: cohort and period analysis, India's NFHS-1

Notes: 5 D a  is child deaths (regardless of child's age) per 
1,000 women per year between woman's ages a and a+5, and 
D  is total number of child deaths per woman, regardless of 
child's age or woman's age, with child deaths (but not 
woman's age) lagged by one year (see equations (55) and 
(56)). A d  is mean age of woman at child death in the global 
life table. TFRWCM is the child-mortality-effect-present TFR.  
TFRNCM is the child-mortality-effect-free TFR. The 
replacement rate is (TFRWCM - TFRNCM)/D .
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Figure 17: Comparison of unadjusted child mortality rates (child deaths but not woman's age lagged by one 
year) by woman's age derived by the birth history and P aitmn  methods: Women age 45-49, cohort analysis, 
NFHS-1
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Figure 18: Comparison of unadjusted child mortality rates (child deaths but not woman's age lagged by one 
year) by woman's age derived by the birth history and P aitmn  methods: Women age 10-49,  period  analysis 
for 1988-92, NFHS-1
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Estimates of TFRWCM, TFRNCM, and R can be calculated by the Paitmn method but 

not by the birth history method. As shown in Table 4, the replacement rate is 0.34 in the 
cohort case and 0.51 in the period case. In other words, a dead child is replaced by about 
one-third of a birth in the cohort case and about one-half of a birth in the period case. One 
expects R to be higher in the period case, because desired family size and fertility have 
been falling and contraception has been increasing over time, implying substantially more 
fertility control among women age 10–49 during the 5-year period before survey than 
among the cohort of women age 45–49 at time of survey who had most of their children 
during earlier periods when fertility control was not so widely practiced.  

 
When fertility is high, replacement is relatively low (due not only to a low level of 

volitional replacement but also to non-volitional replacement as a consequence of 
truncated breastfeeding leading to early resumption of ovulation after an early childhood 
death). But, when fertility is low, replacement is relatively high due to increased 
volitional replacement due to earlier completion of childbearing (as a consequence of 
falling fertility) and higher rates of contraception and abortion. 

 
Validation of the Partitioning Factor 
 
For reasons explained earlier, the “overall probability approach” to calculating 
partitioning factors is preferred over the “logit model approach.” This section tests the 
sensitivity of the global life tables to the choice of partitioning factor. 
 

The sensitivity analysis is based on four different global life tables. The first uses 
the overall probability approach, except when the denominator in the formula for the 
partitioning factor Qaitm is zero, in which case Qaitm is set to zero. The second global life 
table is done the same way, except that Qaitm is set to one when the denominator is zero. 
The third global life table always uses the logit model approach to calculate the 
partitioning factor. The fourth global life table uses the overall probability approach 
throughout, except when the denominator of the formula for Qaitm is zero, in which case 
the “logit model approach” is used. The four global life tables are constructed using 
cohort data (for women age 45–49) from NFHS-1. All four global life tables are based on 
similar CLL models that include no socioeconomic predictors; i.e., the only predictor 
variables that are included are those that represent the basic dimensions of the global life 
table. In the CLL model for parity transition i to i+1, these variables pertain to the 
dimensions a, t, m, and n. 

 
Table 5 compares GLT-derived values of TFR, mean Ad, and R over the four 

global life tables. The three GLTs that use the overall probability approach as the main 
approach  (GLTs 1, 2, and 4) yield TFRs that are identical out to two decimal places. The 
reason for the close agreement is that instances where the denominator of the Qaitm 
formula is zero are rare. GLTs 1,2, and 4 do yield some different values of D and R, 
however. Virtually identical estimates of D and R for GLTs 1 and 4 occur because (1) a 
zero denominator in the formula for Qaitm is a rare event, and (2) a child death over a one-
year age interval is also a rare event. In cases of a zero denominator it does appear 
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preferable, however, to set Qaitm equal to the estimate of Qaitm derived by the logit model 
approach, rather than setting it equal to zero. This is why approach used in GLT 4 is the 
preferred approach in this paper. 
 

Method TFR D R

1 4.89 0.94 0.33
2 4.89 1.00 0.31
3 5.04 1.27 0.36
4 4.89 0.94 0.33

Table 5: Sensitivity of selected global life table results to the choice of the 
partitioning factor Q aitm ;  Women age 45-49, cohort analysis, NFHS-1

Notes: 
Method 1: The "overall probability” approach is used to estimate Q aitm if the 
denominator on the right side of equation (53) is non-zero. probability of a birth during 
the interval differs between the two groups. Q aitm  set to zero if the above-mentioned 
denominator is zero.
Method 2: The "overall probability” approach is used to estimate Q aitm  if the 
denominator on the right side of equation (53) is non-zero. Q aitm  set to one if the above-
mentioned denominator is zero.
Method 3: The “logit model” approach is used to estimate Q aitm .
Method 4: The "overall probability” approach is used to estimate Q aitm  if the 
denominator on the right side of equation (53) is non-zero. The “logit model” approach 
is used if the above-mentioned denominator is zero. (This is the preferred approach that 
is actually used in the application to the three NFHS surveys.)

 
 
APPLICATION OF THE METHODOLOGY TO ALL THREE NFHS SURVEYS 
 
Table 6 presents unadjusted and adjusted values of selected global life table measures, 
based alternatively on cohort and period data from NFHS-1, NFHS-2, and NFHS-3. The 
cohort estimates of D show that number of child deaths per woman declined considerably 
over the three surveys, with little or no difference between the unadjusted and adjusted 
estimates of D in each survey. The decline in the cohort estimate of D occurred not only 
because mortality declined but also because fertility declined (fewer births mean fewer 
child deaths). The cohort estimate of ΔTFR (the incremental increase in TFR due to child 
mortality) remained roughly constant over the three surveys. The cohort estimate of the 
replacement rate R (calculated as ΔTFR/D) rose substantially, however, from about 0.3 in 
NFHS-1 to about 0.5 in NFHS-3, reflecting both fertility decline, mortality decline, and 
increased control over fertility through increased use of contraception and abortion. With 
fertility decline, women have more time to replace dead children as age at completion of 
childbearing declines. The cohort estimates of mean Ad indicate a decline of somewhat 
more than a year over three surveys. This occurred because the reduction of births (and 
therefore early childhood deaths) was concentrated at higher parities and older ages of 



 52

women (for evidence of these reductions, see International Institute for Population 
Sciences (IIPS) 1995; International Institute for Population Sciences (IIPS) and ORC 
Macro 2000; International Institute for Population Sciences (IIPS) and Macro 
International 2007). 
 

                     NFHS-1                       NFHS-2                      NFHS-3  
Unadjusted Adjusted Unadjusted Adjusted Unadjusted Adjusted

     COHORT
 TFRWCM 4.9 4.8 4.5 4.4 4.0 3.9
 TFRNCM 4.6 4.6 4.1 4.1 3.7 3.7
 ΔTFR 0.31 0.25 0.30 0.27 0.30 0.24
 D 0.94 0.92 0.72 0.74 0.55 0.56
 R 0.33 0.27 0.42 0.36 0.55 0.44
 Mean A d 29.3 29.2 28.6 28.5 28.0 27.7

PERIOD
 TFRWCM 3.1 3.2 2.8 2.8 2.7 2.7
 TFRNCM 3.0 3.0 2.7 2.7 2.6 2.6
 ΔTFR 0.15 0.14 0.11 0.11 0.08 0.09
 D 0.29 0.31 0.22 0.23 0.16 0.16
 R 0.51 0.45 0.53 0.49 0.53 0.56
 Mean A d 28.4 28.5 27.9 27.9 28.2 28.0

Table  6: Unadjusted and adjusted values of TFRWCM , TFRNCM, mean number of child 
deaths per woman, child replacement rate, and mean age of women at child death: 
Cohort and period analysis, NFHS surveys

Notes: For definitions of measures in this table, see the notes to Tables 3 and 4.The unadjusted 
cohort R  for NFHS-1 in Table 6 is not exactly the same as the unadjusted R  in the validation 
analysis in Table 4, because the open parity interval used in the calculation of unadjusted R  in 
Table 6 is chosen to be the same as the open parity interval used in the calculation of adjusted 
R, in order to assess more accurately the effect of the adjustment.

 
 The period results in Table 6 are less dramatic, because the period of major 
decline in fertility and major increase in contraceptive use preceded NFHS-1. As the table 
shows, the period TFR declined by only about a third of a child over the three surveys 
(much less than the decline of 0.9 child in the cohort TFR). The major decline in D 
explains why the period estimate of ΔTFR declined over the three surveys. The modest 
decline in fertility and the modest increase in contraceptive use that accompanied the 
decline in ΔTFR are probably the main reasons why the period estimate of R increased 
very little over the three surveys (for the trends in fertility and contraceptive use, see 
International Institute for Population Sciences (IIPS) 1995; International Institute for 
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Population Sciences (IIPS) and ORC Macro 2000; International Institute for Population 
Sciences (IIPS) and Macro International 2007).  
 

Table 7 shows unadjusted and adjusted estimates of total fertility rates (TFRWCM) 
and replacement rates (R) by socioeconomic characteristics for periods and cohorts, based 
on the three NFHS surveys. The discussion here focuses on the replacement rates R. In 
the results for cohorts, when the TFR is low, R tends to be high. R does not differ much 
between urban and rural. R tends to be higher for those with more education in NFHS-1 
but higher for those with less education in NFHS-3. R is consistently higher for those 
with high wealth than those with medium or low wealth. R is also consistently much 
higher for Hindus than for Muslims. Differences in R between those who are not SC/ST 
and those who are SC/ST tend to be small. Differences in R between regions also tend to 
be small. In almost all cases, for reasons already discussed, R increases over the three 
surveys. In the case of education, however, R increases a great deal for illiterates and 
those with low education but changes hardly at all for those with high education. Those 
with high wealth have the highest replacement rate. Adjustment for the other 
socioeconomic variables usually has the effect of reducing differences in R by categories 
of the main socioeconomic variable.  

 
For each category of each socioeconomic variable, the period estimate of R for 

each survey in Table 7 tends to be higher than the cohort estimate, and the trend tends to 
be flatter (especially the unadjusted trend), for reasons mentioned in the discussion of 
Table 6. 

 
The more detailed results are not always easy to interpret, however. For example, 

it is not clear why both the unadjusted and adjusted cohort estimates of R for Muslims 
rose between NFHS-1 and NFHS-2 and then fell between NFHS-2 and NFHS-3. And it is 
not clear why the unadjusted period estimate of R for Muslims rose between NFHS-1 and 
NFHS-2 and then fell between NFHS-2 and NFHS-3, while the adjusted period estimate 
of R for Muslims fell between NFHS-1 and NFHS-2 and then rose between NFHS-2 and 
NFHS-3.  

 
CONCLUSION 
 
Although the underlying methodology is complex, involving the construction of 
multivariate 5-dimensional global life tables of fertility (the dimensions being age, parity, 
duration in parity, and two dimensions pertaining to child mortality), final results are in 
the form of simple bivariate tables and graphs that are easy to understand by not only 
demographers and statisticians but also policy makers and program managers in the 
population field. The global life table is multivariate in the sense that any given measure 
derived from it can be tabulated by values or categories of one socioeconomic variable 
while holding constant the other socioeconomic variables included in the underlying 
discrete-time survival models (one model for each parity transition). The global life table 
can be calculated from either cohort data or period data. Validation of the methodology 
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       TFRWCM        Replacement Rate (R )

       Unadjusted         Adjusted             Unadjusted        Adjusted     
Predictor           NFHS           NFHS           NFHS           NFHS
Variables 1 2 3 1 2 3 1 2 3 1 2 3
     COHORT
Residence
   Urban 4.2 3.8 3.4 4.6 4.1 3.9 0.39 0.42 0.46 0.27 0.34 0.40
   Rural 5.1 4.7 4.3 4.9 4.5 4.0 0.31 0.40 0.54 0.27 0.39 0.46
Education
   Illiterate 5.2 5.0 4.6 5.0 4.7 4.3 0.28 0.36 0.47 0.25 0.37 0.43
   Low 4.5 4.2 3.7 4.6 4.3 3.8 0.31 0.42 0.47 0.29 0.37 0.42
   High 3.3 3.2 2.8 4.4 3.8 3.3 0.39 0.39 0.38 0.34 0.37 0.38
Wealth Index
   Low 5.4 5.0 4.8 4.9 4.2 4.1 0.27 0.35 0.44 0.25 0.32 0.39
   Medium 4.9 4.6 3.9 4.9 4.5 3.9 0.22 0.33 0.41 0.22 0.31 0.38
   High 4.1 3.7 3.1 4.6 4.3 3.7 0.44 0.48 0.53 0.34 0.48 0.52
Religion
   Hindu 4.8 4.3 3.9 4.8 4.3 3.9 0.35 0.44 0.58 0.28 0.38 0.46
   Muslim 5.9 5.8 5.1 5.8 5.5 5.0 0.18 0.46 0.33 0.11 0.28 0.16
SC/ST
   Yes 5.2 4.8 4.5 4.9 4.2 4.1 0.30 0.38 0.50 0.26 0.38 0.41
   No 4.8 4.3 3.8 4.8 4.4 3.9 0.34 0.43 0.56 0.27 0.37 0.45
Region
   North 5.4 5.2 4.7 5.2 5.0 4.6 0.34 0.39 0.53 0.29 0.34 0.43
   East 5.0 4.6 4.3 4.9 4.5 4.1 0.28 0.43 0.48 0.24 0.41 0.44
   South 4.3 3.8 3.1 4.4 3.9 3.2 0.27 0.36 0.39 0.23 0.35 0.41
   West 4.5 3.8 3.4 4.7 4.0 3.8 0.31 0.40 0.43 0.28 0.35 0.33

PERIOD
Residence
   Urban 2.6 2.3 2.1 3.1 2.7 2.5 0.50 0.53 0.53 0.46 0.48 0.56
   Rural 3.4 3.0 2.9 3.2 2.9 2.7 0.48 0.50 0.50 0.44 0.51 0.57
Education
   Illiterate 3.8 3.5 3.5 3.5 3.2 3.1 0.43 0.42 0.41 0.41 0.43 0.47
   Low 2.9 2.8 2.7 2.9 2.8 2.5 0.48 0.55 0.63 0.44 0.52 0.61
   High 2.3 2.2 2.1 2.9 2.6 2.5 0.52 0.56 0.57 0.52 0.53 0.63
Wealth Index
   Low 3.7 3.3 3.3 3.4 3.0 2.9 0.42 0.40 0.41 0.43 0.41 0.45
   Medium 3.2 2.8 2.5 3.1 2.7 2.5 0.45 0.54 0.54 0.45 0.53 0.54
   High 2.4 2.1 1.9 2.9 2.6 2.4 0.49 0.57 0.57 0.44 0.54 0.70
Religion
   Hindu 3.1 2.5 2.6 3.1 3.8 2.6 0.53 0.54 0.55 0.46 0.34 0.56
   Muslim 4.0 3.0 3.2 4.1 4.9 3.4 0.42 0.49 0.45 0.34 0.27 0.43
SC/ST
   Member 3.5 3.0 3.0 3.1 2.8 2.8 0.45 0.44 0.52 0.41 0.44 0.58
   Other 3.0 2.7 2.5 3.1 2.8 2.6 0.52 0.56 0.52 0.46 0.52 0.55
Region
   North 3.8 3.4 3.1 3.8 3.4 3.2 0.52 0.53 0.47 0.46 0.48 0.47
   East 3.1 2.7 2.8 3.0 2.6 2.7 0.42 0.48 0.47 0.41 0.52 0.52
   South 2.5 2.2 2.0 2.7 2.4 2.2 0.30 0.31 0.29 0.41 0.46 0.54
   West 2.8 2.6 2.3 3.1 2.9 2.7 0.48 0.46 0.59 0.45 0.38 0.62

Table 7: Comparison of unadjusted and adjusted total fertility rates (TFRWCM ) 
and child replacement rate by categories of socioeconomic predictor variables: 
Cohort and period analysis, India's NFHS surveys
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using cohort data from India’s first National Family Health Survey (NFHS-1) shows that, 
where comparisons can be made, global life table estimates of fertility and child mortality 
measures of interest agree closely with corresponding estimates derived directly from 
birth histories and from application of earlier versions of the methodology that do not 
incorporate child mortality in the set of predictor variables.   
 
 The principal measure of interest derived from this global life table is the 
replacement rate R, which is defined as the incremental increase in the TFR due to a one-
child increase in the number of child deaths per woman, D, where the value of D is also 
derived from the global life table. R is calculated from India’s three National Family 
Health Surveys. In the application of the methodology to India’s three National Family 
Health Surveys, Results show that replacement of dead children is incomplete. In the 
cohort analysis, unadjusted values of R increased from 0.33 to 0.42 to 0.55 over the three 
surveys. In the case of adjusted values of R, the increase is smaller, from 0.27 to 0.36 to 
0.44 over the three surveys. In the period analysis, unadjusted values of R increased from 
0.51 to 0.53 to 0.53, and the adjusted values of R increased from 0.45 to 0.49 to 0.56. The 
values of R tend to be higher in the period analysis, because women’s exposure to risk of 
both birth and child death is more recent in the period analysis than in the cohort analysis, 
leading to more volitional replacement of dead children due to earlier completion of 
childbearing (as a consequence of falling fertility) and higher rates of contraception and 
abortion. The increase in R over the three surveys is smaller in the period analysis than in 
the cohort analysis because the period of rapid increase in contraceptive use preceded the 
earliest five-year period (1988–92) considered in the period analysis. 
 
 A more general conclusion is that when fertility is high, replacement is relatively 
low (due not only to a low level of volitional replacement but also to non-volitional 
replacement as a consequence of truncated breastfeeding, leading to early resumption of 
ovulation after an early childhood death); and that when fertility is low, replacement is 
relatively high, due to increased volitional replacement.  
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