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Abstract

South Africa and many other countries hope to aggressively expand wind and solar power (WSP) in 
coming decades. The challenge is to turn laudable aspirations into concrete plans that minimize costs, 
maximize benefits, and ensure reliability. Success hinges largely on the question of  how and where to deploy 
intermittent WSP technologies. This study develops a 10-year database of  expected hourly power generation 
for onshore wind, solar photovoltaic, and concentrating solar power technologies across South Africa. A 
simple power system model simulates the economic and environmental performance of  different WSP spatial 
deployment strategies in 2040, while ensuring a minimum level of  system reliability.

The results suggest that explicit optimization of  the location and relative quantities of  WSP technologies has 
the potential to significantly reduce the cost of  greenhouse gas abatement compared to more conventional 
planning approaches. It is estimated that advanced modeling techniques could save South Africa on the order 
of  $100 million per year (present value) by 2040. The data and techniques introduced here utilize open-
source satellite data and software to minimize the cost of  analysis. The approach could be translated to other 
contexts, providing low-cost, early-stage information to guide long-term infrastructure planning as countries 
prepare to exploit WSP at scale. Additional work is needed to incorporate transmission constraints and costs 
and embed the model in a probabilistic framework capable of  identifying deployment strategies that are 
spatially robust to uncertainty in future technology and fuel costs.
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Introduction 

Over 135 countries have adopted renewable energy deployment targets, with particular focus 

on harnessing wind and solar energy for electricity production (REN21 2013). South Africa's 

aspirations are particularly noteworthy given its heavy reliance on coal, which supplies more 

than 90% of the country's electricity. The government's Integrated Resource Plan (IRP) for 

the power sector, approved in 2011, slates wind and solar power (WSP) to provide 21% of 

generating capacity by 2030 (DOE 2011). Planning scenarios developed by the state-owned 

utility Eskom envision WSP penetration potentially reaching 40% by 2040 (Eskom 2012). 

 

While WSP offers many socioeconomic and environmental benefits, it also introduces 

unique challenges. Wind and solar resources vary significantly across space and time; WSP is 

inherently intermittent. Humans' primary control over the magnitude and timing of WSP gen-

eration is in the siting of projects across space. Once a project is constructed, weather pat-

terns dictate performance. 

 

In contrast, the magnitude and timing of conventional generation is controlled by plant op-

erators; fossil fuel generators are highly dispatchable. Replacing dispatchable generation with 

intermittent WSP, as power sectors around the world hope to do, makes it more difficult to 

ensure that power is available when needed. The reliability and cost of power systems with 

high penetration of WSP are determined by the nature of wind and solar resources in the 

region, the way in which WSP technologies are distributed across space, and the ability of 

conventional generators to accommodate intermittency. 

 

South Africa and other countries face a common challenge: how to turn laudable renewable 

power aspirations into concrete plans. This is an exceptionally complex task, and it hinges 

largely on the question of how and where to deploy WSP. Well-designed deployment strate-

gies can take advantage of natural variability in WSP resources across space and time to min-

imize costs and maximize benefits, while ensuring reliability. Poor deployment strategies risk 

locking countries into multi-decade infrastructure investments that unnecessarily increase the 

cost of electricity. 

 

Given the tremendous complexity and long time horizons involved, robust data and model-

ing techniques are needed to inform power sector planning and project procurement. This 

study addresses the case of South Africa in two ways: First, expected generating efficiency 

for key WSP technologies is modeled at hourly resolution over a 10 year period across the 

country. Second, a simple power system model is used to simulate the economic and envi-

ronmental performance of different WSP deployment scenarios in the year 2040. The basic 

objective is to demonstrate the ability of low-cost data and modeling techniques to capture 

the spatiotemporal dynamics critical to power systems with high penetration of WSP and to 

quantify the potential savings from better long-term planning. 
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Section II describes the development of a 10-year, hourly-resolution database of wind speed, 

solar radiation, and general meteorological conditions for South Africa. Section III describes 

how the physical resource data are used to model the expected hourly performance of on-

shore wind farms, utility-scale photovoltaic (PV), and concentrating solar power (CSP) facili-

ties. Section IV summarizes observed spatiotemporal patterns in WSP generating efficiency. 

Section V describes the creation of projected hourly load data for 2040. Section VI describes 

the development of a simple power system model and WSP deployment scenarios for 2040. 

Section VII presents simulation results for those scenarios. Section VIII discusses the results 

and potential for spatiotemporal modeling to improve WSP deployment outcomes and pro-

ject procurement in South Africa and other countries. 

 

Wind and solar resource data 

Modeling of WSP technologies requires numerous data inputs, ideally at high spatial and 

temporal resolution. This section describes the creation of hourly resource variables over a 

10-year period at 0.125º spatial resolution by combining output from NASA's Goddard 

Earth Observing System (GEOS-5) climate model with surface solar irradiance data from 

the Climate Monitoring Satellite Application Facility (CM-SAF) and data produced by the 

Wind Atlas for South Africa (WASA) project (www.wasaproject.info). The resulting data 

include global and diffuse horizontal irradiance, direct normal irradiance, wind speed at 10m 

and 100m above ground level (a.g.l.), and additional “secondary” variables like wind direc-

tion, ambient temperature, relative humidity, air pressure, and surface albedo. 

Wind speed 

High-resolution wind speed datasets from numerical weather modeling are commercially 

available but typically cost-prohibitive for large-scale analysis. The approach described below 

combines output from NASA'a GEOS-5 climate model with data from the numerical wind 

atlas produced by the WASA project. Together, these data allow the generation of plausible 

hub-height hourly wind speed time series for the period 1996 through 2005 for a region in 

the southwest of the country covering most of the Western Cape and parts of the Northern 

and Eastern Cape provinces. 

 

NASA's Modern Era Retrospective Analysis for Research and Applications (MERRA) pro-

ject utilizes the GEOS-5 climate model to produce a global assimilation and reanalysis of the 

satellite and surface record from 1979 to present (Rienecker et al. 2008). MERRA/GEOS-5 

(version 5.2) provides the highest-resolution global reanalysis output currently available and 

provides boundary conditions for operational weather forecasts and higher-resolution nu-

merical weather models. 

 

Initial estimates of hourly wind speed at 10m and 100m a.g.l. are created using surface fric-

tion velocity from GEOS-5 in conjunction with the logarithmic wind profile, assuming neu-

tral stability. Gunturu and Schlesser (2012) use the same data and technique in their analysis 

of wind power resources in the United States. Surface friction velocity at the native GEOS 

http://www.wasaproject.info/


 

3 

 

resolution is bilinearly downscaled to the 0.125º resolution and the logarithmic profile ap-

plied (Eq. 1). 

 

   
  

 
     

   

  
          Eq. 1  

 

Vz is the horizontal wind velocity at height z above ground level, us is the surface friction 

velocity, k is the von Karman constant (0.41), d is the displacement height, and z0 is the 

roughness length. 

 

The surface roughness data are constructed from the USGS Global Land Cover Characteris-

tics v2.0 database (http://edc2.usgs.gov/glcc/globe_int.php) with a native resolution of 

~0.01º, using a land-cover-to-surface roughness lookup table provided by the WASA pro-

ject. Displacement height is assumed to be two-thirds of the mean vegetation height, as giv-

en by Simard et al. (2011) at a native resolution of ~0.01º. 

 

The coarse spatial resolution of the GEOS-5 model does not sufficiently capture small-scale 

wind patterns driven by microclimates and local orography. The WASA project has generat-

ed a high-resolution (~5 km) climatological wind speed database for a region covering the 

southwest of the country. This wind atlas better reflects local terrain but (to date) only pro-

vides the long-term wind speed distribution at various heights for a given site, not hourly 

time series. 

 

Estimated hourly wind speed data from GEOS-5 and wind speed distribution data from 

WASA are combined to create hub height (100m a.g.l.) time series. The WASA data are pro-

cessed to extract long-term Weibull distribution parameters describing the expected wind 

speed distribution at ~14,000 sites. For each 0.125º downscaled MERRA grid cell, a Weibull 

distribution is fit to the GEOS-5 100m a.g.l. hourly wind speed and each observation con-

verted to its distribution p-value. Next, for each WASA site within a given grid cell, the p-

values are translated to hourly mean wind speed using the Weibull distribution provided by 

WASA. The resulting time series are averaged to produce a single, long-term hourly time 

series for each 0.125º grid cell. Figure 1 illustrates the data processing chain. 

 

  

http://edc2.usgs.gov/glcc/globe_int.php
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Figure 1: Wind speed series (100m a.g.l.) processing chain 

 

Solar radiation 

Surface solar radiation data are provided by CM-SAF and include both global and direct 

mean hourly irradiance on a horizontal surface. The data result from processing the first-

generation Meteosat satellite record from 1983 to 2005 (Posselt et al. 2012; Mueller et al. 

2012). Three satellite observations are used to construct each hourly mean. The processing 

algorithm uses effective cloud albedo to estimate cloud transmissivity when calculating irra-

diance at the surface. 

 

Hourly data were obtained for the period January 1, 1996 through December 31, 2005 for all 

of South Africa. Though available at a native spatial resolution 0.03º, mean irradiance was 

extracted at 0.125º resolution to reduce computational demands. Global and direct horizon-

tal irradiance, in conjunction with standard astronomical position algorithms, were used to 

calculate hourly direct normal irradiance (DNI).  
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The 10-year record was also processed to determine the maximum hourly “DNI-cosine 

product” for each grid cell, using equations and assumptions of Wagner and Gilman (2011). 

This quantity is critical to specifying the solar field design parameters of CSP systems (see 

Section III).1 

Secondary variables 

Additional variables were extracted from GEOS-5 model output, including ambient air tem-

perature, specific humidity, surface air pressure, wind direction, and surface albedo. All were 

bilinearly downscaled to 0.125º resolution. Temperature and pressure were additionally ad-

justed for local elevation using standard environmental lapse rates. These variables and 

standard meteorological formulae allow the calculation of additional quantities (e.g. relative 

humidity, dew-point temperature) necessary for accurate modeling of generating efficiency 

(see Section III). 

 

Modeling WSP generating efficiency 

The physical resource time series serve as inputs to the National Renewable Energy Labora-

tory’s System Advisor Model (SAM) software, allowing hourly simulation of generating effi-

ciency for hypothetical PV, CSP, and wind farm installations. This section describes the cho-

sen SAM system parameters for each technology. Simulations were conducted with SAM 

software v2013.1.15 (Gilman and Dobos 2012; SAM 2013). A full 10 years of hourly mete-

orological data (including “secondary variables” described above) are used as inputs to SAM, 

resulting in 10-year hourly generating efficiency time series. 

 

It is not necessary (nor computationally convenient) to model hourly efficiency for every grid 

cell. Instead, for each WSP technology a subset of grid cells is selected. The SKATER spatial 

clustering algorithm is used to segment grid cells into contiguous clusters of a minimum size 

(2,500 km2 for wind and 5,000 km2 for PV and CSP), with clusters selected so they contain 

resource time series that have similar diurnal profiles over each season (Lage et al. 2001). 

 

That is, the primary physical resource time series for wind, PV, and CSP technologies (hub 

height wind speed, GHI, and DNI, respectively) are used to cluster grid cells in a way that 

distinguishes between areas with different temporal resource regimes. Within each cluster 

returned by SKATER, the grid cell with the highest mean annual resource value is then cho-

sen for modeling in SAM. This technique reduces computational demands, while ensuring 

that the sampled sites capture the range of spatiotemporal diversity in the full dataset. 

                                                      

1There are occasional gaps in the CM-SAF radiation data, typically about two days per year. Missing data are re-

placed with the mean value for the same hour over the preceding and proceeding five days. The one exception is 

an extended period of missing direct horizontal irradiance data from June 9, 1997 to June 30, 1997. Replacement 

values are generated by calculating the hourly ratio of direct to global horizontal irradiance for the same period in 

1998 and then applying the ratios to observed hourly global horizontal irradiance in 1997. 
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Onshore wind power 

The wind farm model assumes a 100 MW array consisting of fifty Vesta v90 2.0MW turbines 

with 100m hub height and 90m rotor diameter. The turbines are laid out in a 5x10 rectangu-

lar field, with downstream and transverse turbine spacing equal to 10 and 5 rotor diameters, 

respectively. For each simulated site, the array is oriented so that the downstream spacing is 

parallel to the predominant wind direction observed over the 10-year wind speed time series 

in order to more accurately capture losses due to wake effects. All other variables are set to 

SAM default values. Turbine and array performance are simulated using the wind farm mod-

el of Quinlan (1996). 

Photovoltaic power 

The PV model assumes the use of 230W Jinko Solar JKM230M-60B monocrystalline mod-

ules in conjunction with SMA Solar SB10000TL inverters. The modules are ground-

mounted on single-axis East-West tracking arrays utilizing a backtracking algorithm and 

maximum rotation of +/- 60 degrees. Array spacing assumes a ground cover ratio of 0.4. All 

other variables are set to SAM default values. Module performance is simulated using the 

California Energy Commission (CEC) model and associated module characteristics database 

(De Soto 2004; Dobos 2012). Temperature correction is provided by the nominal operating 

cell temperature (NOCT) model of Neises (2011). Inverter performance is simulated using 

the Sandia National Laboratories model of King et al. (2007) and associated inverter data-

base. 

Concentrating solar power 

The CSP model assumes a 100 MWnet facility with parabolic trough collector technology, air-

cooled condensers, and six hours of molten salt storage capability. The IRP includes cost 

assumptions for CSP facilities with zero, three, six, and nine hours of thermal storage. Six 

hours was chosen as a middle-of-the-road value. In practice, the amount of storage is likely 

to vary across facilities. It is expected that air-cooled condensers will be preferred in water-

scarce areas. 

 

For each simulated site, the solar field is sized to provide a solar multiple of 2.5 at the design 

irradiance point, with the latter equal to the maximum hourly DNI-cosine product calculated 

over the entire 10-year time series. Variables other than those discussed below are set to 

SAM default values. System performance is simulated using the physical trough model of 

Wagner and Gilman (2011). 

 

Because CSP systems (and especially those with storage capability) exhibit thermal inertia, 

generating efficiency in a given hour can be controlled, to some degree, by the plant opera-

tor. This unique behavior is most relevant during periods of high electricity demand, when 

system and plant operators may wish to curtail generation in the hours preceding peak de-

mand in order to charge the storage system and allow maximum electricity generation when 

it is needed most (for example, in the evening after the sun has set). 
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In practice, optimal or near-optimal behavior of this kind is determined endogenously and 

dictated by complex, real-time power system considerations, weather forecasts, electricity 

prices, etc. The parameters guiding SAM's internal CSP plant control algorithm (which de-

cides when to direct energy to the generator block versus storage) are adjusted in an attempt 

to approximate such behavior exogenously. 

 

Projected electricity demand, operating costs, generating fleet characteristics, and representa-

tive wind and PV generating efficiency time series are used to estimate marginal running 

costs (i.e. per-unit revenue in a competitive electricity market) that might confront South 

African CSP operators for various hours of the year in 2040 (per the scenarios described in 

Section VI). High marginal running costs indicate hours when the generating fleet is operat-

ing near capacity and additional generation (provided by CSP plants) is highly valued. In 

South Africa, this primarily occurs during winter evenings (see Section V). 

 

This information was introduced into SAM's thermal storage dispatch schedule and, for a 

small set of representative locations, the parameters guiding plant operation were optimized 

to find those that minimized the levelized cost of electricity. Those parameters were then 

applied universally when simulating the performance of other sites. The net result is sup-

pressed CSP generation during winter afternoons in order to provide maximum output dur-

ing the evening. Outside of winter (May-August), the default plant control algorithm is used. 

 

Spatiotemporal patterns in expected generating efficiency 

The SAM simulations result in 10-year hourly generating efficiency time series for 176 PV 

sites, 178 CSP sites, and 110 wind farm sites. This section summarizes the spatial and tem-

poral patterns observed in those data. 

 

I use the term “generating efficiency” to specify mean hourly power output as a fraction of 

(net) generating capacity. It is synonymous with “hourly capacity factor”. A generating effi-

ciency of one indicates the technology is capable of operating at maximum capacity during 

the hour. 

 

The WSP generating efficiency time series analyzed in this section are available to the public 

per the Center for Global Development's data disclosure policy (cgdev.org/page/research-

data-and-code-disclosure). Data files and sample code can be downloaded at: 

cgdev.org/section/publications?f[0]=field_document_type%3A2057 

Exclusion of areas deemed infeasible 

The maps below exclude areas (indicated by white grid cells) that are considered infeasible 

for siting of facilities. The exclusion screens are from Ummel (2011), which provides high-

resolution WSP screens at global scale built from a range of geospatial data layers. The tech-

nology-specific screens consider land cover, terrain slope, proximity to human populations, 

geomorphology, and protected areas and parks. 

http://www.cgdev.org/page/research-data-and-code-disclosure
http://www.cgdev.org/page/research-data-and-code-disclosure
http://www.cgdev.org/section/publications?f%5b0%5d=field_document_type%3A2057
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Long-term mean efficiency across space 

In the interest of providing long-term mean generating efficiency maps, the 10-year time 

series results were averaged over the full period for each modeled grid cell and technology. 

The results were then spatially interpolated for non-modeled grid cells using a combination 

of universal kriging and an automatic variogram fitting procedure (Hiemstra et al. 2009). For 

each technology, the kriging model includes an observed variable in addition to location. For 

wind, the predictor is mean hourly hub-height wind speed converted to generating efficiency 

via a generic wind turbine power curve. Mean hourly GHI and DNI are used for PV and 

CSP, respectively. 

 

Expected, long-term wind farm generating efficiency (100m hub height) reaches up to 50% 

in the most suitable locales (Figure 2). The extent of the study area is restricted to the area 

covered by the WASA numerical wind atlas. The most efficient locales cluster in the Western 

Cape, to the northeast and southeast of Cape Town, and in the northern reaches of the 

Eastern Cape. There is also evidence of strong, but spatially-limited, potential among coastal 

sites in the Northern Cape. 

 

Figure 2: Mean modeled wind farm (100m hub height) generating efficiency (1996-

2005) 
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Figure 3: Mean modeled utility-scale PV (monocrystalline) generating efficiency 

(1996-2005) 

  

Figure 4: Mean Modeled CSP (6 hours storage; air-cooled) generating efficiency 

(1996-2005) 
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It is important to mention that the wind farm exclusion screen specifically excludes 

cropland. Although wind turbines can be placed on agricultural land, conversations with 

Eskom staff indicated likely resistance to wind farm development among agricultural inter-

ests in South Africa. Some areas with good wind resources are consequently excluded from 

Figure 2 and the subsequent analysis. 

 

Expected, long-term PV generating efficiency exceeds 30% in the highest-efficiency sites in 

the Northern Cape (Figure 3). The best sites are located significantly to the west, with some 

high-quality locales stretching south into the Western Cape. There are moderate PV re-

sources in the northeast around the Pretoria/Johannesburg area. 

 

Expected, long-term CSP (6 hour storage) generating efficiency is up to 50% among the 

highest-efficiency sites in the Northern Cape (Figure 4). Notice that the best CSP sites show 

a different geographic distribution than for PV, reflecting the different solar irradiance and 

temperature dependence of the technologies. Similar to PV, there are some moderately good 

CSP resources located closer to population centers in the Western Cape and Preto-

ria/Johannesburg area. 

 

Peak period efficiency across space 

The performance of WSP technologies during periods of high electricity demand is of par-

ticular interest from the standpoint of integration and reliability. Section V describes the 

generation of projected hourly electricity demand for the South Africa power system in 

2040. On the basis of those results, three periods of particularly high electricity demand are 

identified: 1) winter evenings (MJJ, 5-8PM); 2) winter mornings (MJJ, 8-12AM); and 3) 

spring evenings (ASO, 6-8PM). A fourth “period” is also included, consisting of hours ex-

hibiting load within the top 1% of all hours, given that information derived from this hourly 

subset is known to be useful for approximating the ability of WSP resources to contribute to 

reliability targets (Milligan and Porter 2008). Mean generating efficiency maps were created 

for each of the periods, using the same spatial interpolation technique described above for 

long-term mean efficiency. 
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Figure 5: Mean modeled wind farm generating efficiency, by high-load period (1996-

2005) 

a) Winter evening (MJJ 5-8PM) 

 

                                
b) Winter morning (MJJ 8-12AM) 
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c) Spring evening (ASO 6-8PM)  

 

 

 d) Top 1% of load hours      

 

Among the four periods in Figure 5, wind generating efficiency is highest during winter 

mornings, with the best locales reaching mean hourly capacity factors of 70%. Conversely, 

during winter evenings (the primary peak period), the best sites reach (on average) only 30%. 

The geographic location of the best sites is also very different between periods. During win-

ter mornings, the best locales are found in the northeast reaches of the Eastern Cape. In the 

evenings, however, the best locales congregate in the Western Cape, southwest of Cape 

Town. This is consistent with diurnal wind speed patterns that favor daytime wind power 

production over evenings (see Figure 8). 

 

PV and CSP generating efficiency during peak periods generally reflects east-to-west varia-

tions in the height of the sun but with technology-specific differences (Figures 6 and 7). In 

the case of PV, efficiency is highest during winter mornings, with the evening peak periods 

exhibiting considerably lower output. Note, however, that the locales most suitable for win-
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ter morning generation are to the east and do not overlap with those identified in Figure 3 as 

most-suitable for long-term efficiency. 

 

Due to thermal inertia and storage, winter mornings are the period of lowest generating effi-

ciency in the case of CSP. The other periods (dominated by evening hours) exhibit much 

higher efficiencies in the best locales but with geographic differences between periods. In 

particular, the sites most suitable for spring evening generation are quite different than those 

most suitable for winter evenings – and both are different than the best long-term locales 

identified in Figure 4. 

 

Figure 6: Mean modeled utility-scale PV generating efficiency, by high-load period 

(1996-2005)     

a) Winter evening (MJJ 5-8PM)  

  
b) Winter morning (MJJ 8-12AM) 
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c) Spring evening (ASO 6-8PM)                                              

 

 

d) Top 1% of load hours  
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Figure 7: Mean modeled CSP generating efficiency, by high-load period (1996-2005) 

 

 

b) Winter morning (MJJ 8-12AM) 

 

 

 

 

 

 

 

a) Winter evening (MJJ 5-8PM) 
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c) Spring evening (ASO 6-8PM) 

 

 

d) Top 1% of load hours  

 

Diurnal trends across seasons 

The generating efficiency of WSP technologies often varies predictably over the course of a 

day (diurnal pattern) and seasons. The diurnal behavior of WSP determines the nature of its 

interaction with load and conventional technologies within the power system. Figures 8 

through 10 below summarize a large amount of hourly data to reveal typical diurnal patterns, 

by season and WSP technology, across the whole of South Africa. Each colored line shows 

the mean diurnal pattern for an individual modeled site.  
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The black line shows the mean diurnal pattern across all modeled sites. Although certain 

trends are evident, there is also considerable variability as a result of the inherent spatial di-

versity. 

 

Figure 8: Mean diurnal generating efficiency, by season, for 110 modeled wind sites 

(1996-2005) 

 

Figure 9: Mean diurnal generating efficiency, by season, for 176 modeled PV sites 

(1996-2005) 
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Figure 10: Mean diurnal generating efficiency, by season, for 178 modeled CSP sites 

(1996-2005) 

 

Wind power resources within the assessed region show a clear tendency toward higher gen-

erating efficiency during the day. The general diurnal pattern of higher daytime efficiency is 

evident across all four seasons. The summer (NDJ) diurnal pattern is particularly pro-

nounced, with efficiency peaking in the late afternoon. Winter (MJJ) generating efficiencies 

are significantly lower, with a less pronounced daytime peak and particularly low early even-

ing output. 

 

PV power resources exhibit a predictable diurnal pattern, though with significant variation 

reflecting geographic and seasonal differences. On average, summer generating efficiency 

remains relatively high into early evening, with some locales showing mean capacity factors 

in excess of 50% in the 6-7PM period. Winter generation truncates earlier in the day. The 

peak efficiency over the course of a given day does not differ much between seasons. 

 

CSP resources are able to extend generation far into the evening, particularly in summer 

where some locales exhibit capacity factors in excess of 50% through midnight. The clearly 

different winter diurnal profile reflects the modified plant control algorithm used during that 

season (see Section III). The algorithm effectively suppresses electricity generation during 

midday and early afternoon hours in order to charge the storage system and maximize out-

put during peak-period winter evenings. Notice the considerable variation across sites in 

CSP generating efficiency during evening and nighttime hours. Because performance during 

those hours is largely determined by the accumulation of solar energy over the course of the 
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day, relatively small day-time differences in generating efficiency are not inconsistent with 

large differences in generating efficiency after sunset. 

 

Hourly electricity demand 

Data on hourly, system-wide electricity demand (load) in South Africa during 2010 and 2011 

were provided by Eskom staff. The power sector scenarios described in Section VI (below) 

are for the year 2040, requiring present-day load be projected to that date. 

 

Between the present and 2040, electricity demand in South Africa is expected to increase 

appreciably. The IRP provides projected mean and maximum load for South Africa through 

2030, which are then linearly extrapolated to 2040. Mean hourly load is assumed to grow 

75% (from 28GW to 49GW); maximum annual (peak) load is assumed to grow nearly 120% 

(from ~37 GW to 80GW). These figures account for assumed demand side management 

efforts through 2030, per the IRP. In addition, it is assumed that minimum annual load is 

40% of peak load in 2040, based on load behavior in New South Wales, Australia, which is 

thought to provide a developed-country comparator in a similar climate. 

 

Using the assumed changes to minimum, mean, and maximum load, the 2010-2011 time 

series is scaled to 2040. The differing rates of change in mean and maximum load imply that 

higher-load hours will grow disproportionately faster than lower-load hours, but the exact 

nature of the changes to the load profile is unclear. In the absence of such information, the 

scaling process is necessarily arbitrary. 

 

The technique used here assumes that higher-load hours increase exponentially faster than 

lower-load hours. Let r be a vector containing the ratio of hourly load to the minimum an-

nual load over 2010-2011. Let R be an analogous vector of ratios used to scale load in 2011-

2012 to 2040. Based on the assumed changes described above, R must range from 1 to 2.5 

with a mean value of 1.53. I assume that R = S(rx), where x>1 and S is a function that linear-

ly scales rx between 1 and 2.5. The value of x is determined numerically such that the mean 

of R is 1.53, which occurs at x=2.18. 

 

Figure 11 shows the resulting distribution of load, by season and time of day, for 2040. The 

solid black line shows mean load; the grey violin plots show the relative probability distribu-

tion across two years of hourly data. The highest-load hours most often occur during winter 

evenings (MJJ) between 5 PM and 8 PM. There are two additional periods of relatively high 

load: winter mornings (MJJ; 8 AM to noon) and spring evenings (ASO; 6 PM to 8 PM). 

 

Power system scenarios and modeling 

Sections VI and VII use the data developed above to simulate the economic and environ-

mental performance of three different WSP deployment patterns in the year 2040. An 

Eskom planning scenario is used as the basis for this exercise. 
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This section describes the “default” Eskom scenario and the WSP spatial deployment pat-

tern it implies. Then, a simple power system model is introduced that simulates hourly sys-

tem performance with respect to reliability, carbon dioxide (CO2) emissions, and overall cost, 

taking into account the spatiotemporal variability inherent to WSP resources. Finally, two 

variations on the original scenario are developed (Variation A and Variation B) by optimiz-

ing the location and quantity of WSP technologies to minimize the cost of CO2 abatement. 

Simulation results for all three scenarios are presented in Section VII. 

 

Figure 11: Assumed 2040 system-wide load profile and distribution, by season 

Default Green scenario 

Eskom has created a number of power system planning scenarios for WSP expansion 

through the year 2040, guided by the IRP (Eskom 2012). One of those scenarios, called the 

“Green” scenario, envisions total WSP capacity in excess of 46.5 GW in 2040. 

 

The Eskom Green scenario is particularly aggressive with respect to WSP deployment, 

which makes it especially interesting from the standpoint of integration and reliability. The 

approved IRP currently envisions 18.8 GW of WSP by 2030. The Green scenario increases 

that figure appreciably by 2040, largely due to the exclusion of new nuclear capacity. In con-

trast, the IRP relies on the addition of 9.6 GW of nuclear capacity by 2030 to meet electricity 

demand and emissions targets. Table 1 gives the installed capacity and level of penetration, 

in 2040, for each generating technology in the default Green scenario. 

 

Table 1: Installed capacity by 2040 in default Green scenario 
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Generating technology MW installed by 2040 Penetration (% of total) 

Coal 41,071 36.4 

Open-cycle gas turbine (OCGT) 7,780 6.9 

Combined-cycle gas turbine 
(CCGT) 

7,170 6.3 

Pumped storage (hydro) 2,912 2.6 

Nuclear 1,800 1.6 

Imports (hydro) 4,759 4.2 

Biomass 890 0.8 

Wind 23,000 20.4 

PV 12,600 11.1 

CSP 10,960 9.7 

Total 112,942 100% 

 

 

Given the high penetration of WSP in the Green scenario, the performance of the power 

system is strongly affected by the assumed location of WSP facilities. Eskom has identified 

geographic areas (zones) where it deems future deployment of different WSP technologies to 

be likely. The Green scenario specifies how much Wind and CSP capacity to allocate to each 

of the relevant zones. Geographic zones are also identified for PV deployment, but no quan-

tities are assigned to specific zones. Consequently, I assume that the PV fleet is distributed 

evenly across the identified zones. 

 

The technology zones identified by Eskom are relatively large. Within a given zone, I assume 

that projects are ultimately sited in locales (grid cells) with the highest long-term capacity 

factors. This is a reasonable assumption given the desire of project developers to maximize 

long-term electricity output. Figure 12 (following section) displays the resulting WSP spatial 

deployment pattern implied by Eskom's Green scenario for 2040, given the aforementioned 

assumptions. 

Simple power system model 

Given assumed quantities of conventional generation and a pattern of spatial deployment for 

WSP technologies, it is possible simulate system performance in terms of CO2 emissions, 

reliability, and cost. To do this, a simple, single-node power system model is created. It as-

sumes there are no transmission or distribution constraints or costs. 

 

Given a particular WSP deployment pattern, the model uses data described in Section IV to 

calculate the aggregate (i.e. fleet-wide) hourly WSP power generation for a 10-year period. In 

conjunction with the load time series described in Section V and the conventional generation 

quantities in Table 1, the loss of load probability (LOLP) is calculated for each hour. The 



 

22 

 

LOLP gives the likelihood that electricity supply will be insufficient to meet demand, taking 

into account the probability of unexpected outages among conventional generators.2 Sum-

ming the LOLP over 10 years of hourly data gives the loss of load expectation (LOLE), usu-

ally expressed as hours per year, which is a standard measure of system reliability. Although 

alternative reliability metrics are possible (e.g. unserved energy), LOLE is convenient and 

easily benchmarked.3 

 

After making an initial LOLE calculation, the model then determines how to adjust the 

Green scenario's open-cycle gas turbine (OCGT) capacity to achieve the specified LOLE. A 

LOLE target value of 0.1 days per year is used, as this is commonly cited as a typical level of 

planning reliability in developed country power systems (NERC 2012). To achieve the target 

LOLE, the model may add or subtract OCGT capacity from the Green scenario initial ca-

pacity of 7.78 GW. 

 

The use of multi-year, hourly time series is critical to accurate calculation of long-term relia-

bility. In an analysis of high-resolution wind power data from Ireland, Hasche et al. (2011) 

show that at least five years of hourly data (and ideally more) are needed to accurately calcu-

late the ability of the wind power fleet to contribute to system adequacy. Longer time series, 

such as the 10 years of hourly data used here, capture the considerable inter-annual variabil-

ity that shorter time series can miss. 

 

The model assumes that pumped storage and import hydroelectric capacity is available when 

it is likely to be needed most. This is accomplished by allocating pumped storage and import 

hydroelectricity generation to hours where the net load (load minus WSP output) is highest, 

subject to the constraint that the long-term (net) capacity factors for pumped storage and 

hydroelectric imports must be 0.2 and 0.4, respectively, as specified in the IRP. 

 

The model also imposes a “turndown rate” on coal and nuclear generators, reflecting the 

need to maintain a minimum level of thermal output and preventing them from dropping 

below an hourly capacity factor of 0.35 (Ihle and Owens 2004). If WSP, pumped storage, 

and hydroelectric imports are so large in a given hour that coal and nuclear generators would 

be forced below the turndown rate, the former are curtailed accordingly.4 

                                                      

2The LOLP calculation treats WSP generation as a negative load, following the convention outlined by Keane at 

al. (2011). The cumulative outage probability table (COPT) for conventional generators is constructed using the 

recursive convolution algorithm described in Makarov et al. (2010). 

3The concept of power system “reliability” has a number of components (e.g. frequency regulation), but the focus 

here is on what is usually (and more accurately) referred to as “system adequacy”. I use “reliability” throughout 

given its greater familiarity with a general audience, but its use is meant to be synonymous with “adequacy”. 

4Coal and nuclear plant thermal efficiency is assumed constant. In practice, efficiency declines at lower capacity 

factors. The inclusion of ramp rate constraints was considered, but the typical, hour-to-hour variability observed 

within the WSP fleet was such that the constraint was deemed minimal and consequently excluded. Ramp rates 
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The 10-year, hourly economic and environmental performance of the system is calculated, 

assuming that generating technologies are prioritized by their marginal running cost – i.e. 

within a given hour, the system utilizes WSP generation first and only resorts to relatively 

expensive gas generation when absolutely necessary to meet demand. Hourly operating 

costs, annualized capital costs, and hourly CO2 emissions are also calculated, using technolo-

gy and fuel cost assumptions and CO2 emissions factors taken from the IRP. 

 

Finally, the average cost of CO2 abatement is estimated. Abatement cost calculations require 

a baseline or counter-factual scenario without WSP. Consequently, the model is first opti-

mized to determine the minimum annual cost of meeting electricity demand in the absence 

of WSP – i.e. a low-cost, high-pollution scenario. The optimization uses the Green scenario's 

default installed capacity values (Table 1), but replaces WSP with the least-cost combination 

of Coal, OCGT, and CCGT. The overall cost and CO2 emissions resulting from this least-

cost system are used as the comparator when calculating the cost of CO2 abatement associ-

ated with the introduction of WSP. 

Variations on the Green scenario 

In addition to the default Green scenario described above, two variations are constructed. 

The first, called Variation A, is identical to the Green scenario, except that the location of 

WSP capacity in 2040 is optimized to find the spatial arrangement that minimizes the cost of 

CO2 abatement. The second, called Variation B, also allows the quantity of WSP capacity to 

be optimized, subject to the constraint that a total of 46.5 GW of WSP capacity be installed 

in 2040. 

The task of optimizing the location of WSP resources presents a non-trivial optimization 

problem. The number of potential combinations of quantities, technologies, and locations is 

immense. Traditionally, power system planning models have relied on linear programming 

(LP) techniques (e.g. Short et al. 2011). While efficient and robust, LP models require prob-

lems be specified in a particular form, preventing, for example, direct computation of 

LOLP/LOLE reliability metrics using long-term hourly time series. 

The alternative approach used here employs an evolutionary search or “genetic” algorithm 

(GA) to “evolve” an initial solution set (or “population”) towards the global minimum, using 

rules for gene mutation and crossover borrowed from evolutionary biology. Specifically, I 

use the GENOUD algorithm as implemented in the “Rgenoud” package for the R pro-

gramming language (Mebane and Sekhon 2011). This technique allows the objective function 

and parameter constraints to be specified in any manner. While GA's are not definite, they 

                                                                                                                                                 

are likely to be important  if higher-resolution WSP resource data are used and/or spatial transmission constraints 

are imposed. 
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are quite effective at identifying the global optimum, provided the initial population is suffi-

ciently large (Lobo and Lima 2007). 

The parameters to be optimized include the quantity of WSP capacity to be deployed in a 

given grid cell for a given technology. Section IV presents spatiotemporal generating effi-

ciency data for a relatively large number of modeled WSP sites and interpolates that data 

across all grid cells in the study area via universal kriging. It is possible to condense this data 

without losing information, in an effort to reduce the number of parameters needed to ob-

tain an optimized deployment pattern. 

The SKATER clustering algorithm is again used to cluster modeled WSP sites, grouping 

those with similar diurnal generating efficiency patterns across seasons. Within each cluster, 

all feasible grid cells are ranked from highest long-term capacity factor to lowest. It is as-

sumed that, within a given cluster, the sites with the highest long-term capacity factors are 

given preference. 

For each cluster, a function is constructed that describes how a given quantity of capacity is 

to be allocated across individual grid cells. These functions are used within the model objec-

tive function to quickly compute the 10-year, hourly electricity output time series for a given 

capacity in a given cluster. This clustering approach is used to reduce the number of model 

parameters to a more manageable number for the purposes of optimization, while retaining 

much of the spatiotemporal information in the underlying time series database. 

The simple power system model is optimized using the GENOUD algorithm to identify 

particular patterns of WSP deployment that minimizes the cost of CO2 abatement. Variation 

A results from optimizing only the location of WSP facilities; the total installed capacity of each 

WSP technology is the same as in the default Green scenario (Table 1). Variation B results 

from optimizing both the location and quantity of individual WSP technologies, subject to the 

constraint that a total of 46.5 GW of WSP capacity be installed.5 

 

One could alternatively minimize (or maximize) an economic or environmental metric other 

than the cost of CO2 abatement; for example, minimizing total emissions or cost. However, 

the abatement cost captures the inherent tradeoff between economic and environmental 

objectives, thereby providing a more comprehensive metric for ranking deployment options. 

As shown in the following section, optimizing with respect to abatement cost allows for the 

identification of deployment strategies that are not cost- or emissions-minimizing but likely 

to be preferable from a policy perspective. 

  

                                                      

5  The Variation A and Variation B models contain ~90 parameters (clusters) each. Lobo and Lima (2007) cite 

analysis by Pelikan et al. (2003) that asserts GA population size should be between approximately p1.05 and p2.1, 

where p is the number of parameters. With this in mind, a population size of 8,000 was selected and the two op-

timizations run simultaneously, each using a single compute core. Each run required ~700,000 objective function 

evaluations to settle on a solution, requiring ~78 core-hours on a 2.5 GHz Intel Core i5 processor. 
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Simulation results  

Table 2 summarizes simulation results for the default Green scenario as well as Variation A 

and Variation B. The Green scenario exhibits an average cost of CO2 abatement in 2040 of 

$26.5 per tCO2 (2010 dollars). Variation A and B, which optimize the location and quantity 

of WSP technologies so as to minimize abatement costs, result in commensurate values of 

$22.8 and $15.7, respectively. 

Table 2 also identifies other differences between scenarios. Note that the default Green sce-

nario and Variation A, by design, contain the same installed capacity for wind, PV, and CSP. 

Yet, the average capacity factor across these technologies differs considerably between sce-

narios, with Variation A siting facilities such that the WSP fleet generates about 6% more 

electricity than in the Green scenario. 

 

Variation B results in a very different balance of WSP technologies. The abatement cost-

minimizing solution returned by the GA contains nearly 39 GW of PV capacity, compared 

to just 2.8 GW of wind and 4.9 GW of CSP capacity. This dramatic shift towards PV drives 

down the annualized cost of operating the power system (due to the projected low capital 

cost of PV in 2040) but results in slightly higher CO2 emissions. However, since the cost 

savings are relatively greater than the emissions increase, the cost of CO2 abatement declines. 

As noted in Section VI, the model internally adjusts the amount of OCGT capacity to ensure 

a long-term LOLE value of 0.1 days per year, based on 10 years of hourly simulation and the 

particular WSP deployment pattern. The dramatic shift to PV in Variation B is only possible 

because of significant changes to the quantity of gas generating capacity. Section IV shows 

that PV has little ability to contribute electricity during high-load evening periods. Variation 

B responds by building out OCGT capacity, as evidenced by an increase in the reserve mar-

gin. With respect to the cost of CO2 abatement, the economic and environmental cost im-

posed by the building and using of gas capacity, given the IRP's assumptions, do not out-

weigh the benefits of increased PV capacity. 

 

Figures 12, 13, and 14 display the WSP spatial deployment patterns returned for the default 

Green scenario, Variation A, and Variation B, respectively. These are the deployment pat-

terns underlying the results in Table 2. 

 

The default Green scenario deployment pattern (Figure 12) exhibits relatively wide-ranging 

solar power dispersion, reflecting Eskom's assumptions regarding areas likely to see WSP 

development. By comparison, Variation A and Variation B consolidate PV and CSP capacity 

in the Northern Cape, utilizing the highest efficiency locales. Variation B (which is dominat-

ed by PV) disperses PV capacity throughout the Northern Cape and, to a much smaller de-

gree, the Western Cape and North West Province. Variation A is not significantly different 

than the default Green scenario is in terms of wind power siting, though the former does 

shift capacity away from the coastal Northern Cape and into the Western and Eastern Cape 

where the wind resource is deemed more desirable. 
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Table 2: Summary of simulation results 

 

 Green scenario Variation A Variation B 

Average abatement cost in 2040 (2010 USD per tCO2 ) $26.5 $22.8 $15.7 

Average annual emissions in 2040 (MtCO2 ) 236 229 241 

Average annualized system cost in 2040 (2010 billion 
USD) 

26.3 26.1 25.1 

Average annual WSP electricity delivered in 2040 
(TWh) 

138.8 147.1 132.2 

Reserve margin (%) 38.5 36.9 44.2 

    
Onshore wind average capacity factor (%) 32.6 33.5 35.9 

PV average capacity factor (%) 29.0 32.0 30.0 

CSP (6hr) average capacity factor (%) 42.9 46.2 46.2 

    
Onshore wind capacity in 2040 (GW) 23.0 23.0 2.8 

PV capacity in 2040 (GW) 12.6 12.6 38.8 

CSP (6hr) capacity in 2040 (GW) 11.0 11.0 4.9 
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Figure 12: Assumed WSP spatial deployment pattern in 2040 for default Green sce-

nario 

 

Figure 13: WSP spatial deployment pattern in 2040 for Variation A scenario 
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Figure 14: WSP spatial deployment pattern in 2040 for Variation B scenario 

 

Figures 15, 16, and 17 show the mean diurnal generation profile, by season, for the default 

Green scenario, Variation A, and Variation B, respectively. Each figure shows how, on aver-

age, the various technologies in the power system combine to meet the system-wide load. 

The data underlying these figures include 10 years of hourly simulation results. In all cases, 

the winter evening peak period exhibits increased use of OCGT and CCGT generators to 

meet the increased demand. 

It is difficult for the eye to discern differences between the mean diurnal generation profiles 

for the default Green scenario and Variation A. Both exhibit broadly similar patterns in the 

magnitude and timing of power generation among different technologies. However, even the 

relatively small differences resulting from improved WSP siting lead to significant differences 

in the average cost of CO2 abatement (Variation A being 14% lower, as noted in Table 2). 
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Variation B (Figure 17), on the other hand, is clearly different. The large quantity of PV ca-

pacity results in a dramatic day-time decline in coal power output (replaced by PV power). 

Coal power then ramps up quickly to help address higher-load evening periods in which the 

contribution from WSP is quite small. Figure 17 also clearly shows the increased prominence 

of gas generation in meeting high-load periods, as evidence by the higher reserve margin 

noted in Table 2. 

Figure 15: Mean diurnal generation profile in 2040 for default Green scenario, by sea-

son 
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Figure 16: Mean diurnal generation profile in 2040 for Variation A scenario, by season 

 

Figure 17: Mean diurnal generation profile in 2040 for Variation B scenario, by sea-

son 

  



 

31 

 

Discussion 

As noted in Section I, an important objective of this research is to demonstrate the potential 

for new data and modeling techniques to capture important spatiotemporal dynamics in 

power systems with high penetration of WSP. The results presented in Section VII suggest 

that the use of such techniques to explicitly optimize the location and quantity of WSP tech-

nologies could potentially identify deployment strategies that significantly reduce the cost of 

CO2 abatement, while ensuring reliability. 

The model presented here is an admittedly simplistic representation of South Africa's power 

system. Most notably, it ignores transmission issues that could play an important role in 

guiding cost-effective deployment of WSP. And since the model is a simple, single-node 

model, load variation and balancing across space are effectively ignored. 

However, one of the advantages of the technique introduced here is its flexibility. The GA 

optimization approach allows for model specification to take on any form (even sub-

optimization routines), and the WSP spatial clustering process provides a defensible way to 

scale the problem size for available computing resources. Moreover, GA optimization is typ-

ically “embarrassingly parallel”, offering the option to utilize cloud computing for very large 

simulations. 

A primary task for future research is to incorporate transmission costs and constraints into 

the modeling framework. This will require data and institutional support from South Africa's 

grid operator, and the creation of transmission infrastructure cost assumptions, as the IRP 

does not currently address this subject. It is not clear if inclusion of transmission costs and 

constraints would necessarily alter the optimal mix or location of technologies, but it would 

increase the cost of CO2 abatement. 

Further work is also needed to simulate system expansion over time (e.g. 2015 through 2040 

with WSP deployment or emissions targets for each year) and uncertainty in critical cost as-

sumptions (e.g. Monte Carlo analysis over a range of future technology and fuel costs). None 

of these advances pose overwhelming technical challenges – they can be introduced to the 

existing model given its flexibility – but they will require buy-in by stakeholders in South Af-

rica's power sector. In short, the barriers are likely more political than technical. 

The need to embed future planning models (whether this one or others) in a probabilistic 

framework is made clear by the dramatic shift towards PV in Variation B. This result is driv-

en, in large part, by the IRP's assumption of declining PV capital costs over time. But the 

pace and magnitude of cost reductions is, in fact, uncertain. This uncertainty is especially 

crucial for transmission infrastructure, which must be routed and built well in advance of the 

WSP facilities it will eventually serve. 

The overarching goal of probabilistic planning models must be to identify deployment strat-

egies that are spatially robust to future uncertainty; for example, identification of transmission 

corridors that allow for potential utilization of multiple regions and WSP technologies, de-
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pending on the evolution of costs over time. This further increases the complexity of the 

planning problem, but such knowledge could reduce long-term financial risk for all involved 

and accelerate infrastructure planning and permitting. The spatial implications of uncertainty 

is an unexplored but clearly important area for future research. 

The immediate question, however, is not whether (or even how) the results of this study 

would change with the inclusion of transmission issues; additional technical, political, or so-

cioeconomic constraints; or different cost assumptions. Changing model inputs would un-

doubtedly change the output. The more important question is whether the development of 

high-resolution WSP data and more sophisticated modeling techniques is worthwhile. Could 

such efforts lead to appreciably better outcomes in terms of power system cost, pollution, 

and reliability? 

Using the results of this study, a back-of-the-envelope estimate is that more advanced mod-

eling efforts could save South Africa on the order of $100 million in 2040 compared to cur-

rent planning approaches (2010 $USD; present value at 8% real discount rate). This figure is 

based on comparison of the default Green scenario (conventional planning) and the opti-

mized Variation A.6 It seems likely, given the large, multi-decade investments South Africa 

must make, that simultaneous optimization of WSP siting, transmission build-out, and other 

considerations would increase the returns. It is reasonable to expect that the greater the WSP 

penetration and more complex the system under study, the larger the returns to high-

resolution, spatiotemporal modeling. 

The value of analyses that explicitly incorporate long-term spatiotemporal data will become 

more pronounced as the quality and resolution of WSP time series improve. This is particu-

larly true of wind power, where small-scale orography may provide individual wind farm 

sites that exhibit unusual and/or useful temporal patterns. This requires high-resolution nu-

merical weather modeling, as currently being carried out by the WASA project. That data, 

along with future characterization of South Africa's offshore wind resources, could provide 

even greater opportunity for spatial optimization techniques to combine sites and technolo-

gies in particularly advantageous deployment patterns. 

South Africa is well-positioned to take advantage of policy guidance provided by more ad-

vanced modeling efforts. The Renewable Energy Independent Power Producer (IPP) Pro-

curement Programme has already successfully completed two rounds of bid solicitation, ap-

proving ~2.5 GW of WSP capacity to date (http://www.ipprenewables.co.za/). In conjunc-

tion with the Council for Scientific and Industrial Research's (CSIR) ongoing Strategic Envi-

ronmental Assessment (SEA) for wind and solar PV rollout 

                                                      

6The optimized deployment pattern in Variation A reduces the cost of CO2 abatement by $3.70 per tCO2. A 

rough estimate of the annual savings is made by multiplying this number by the 228.7 MtCO2 annual emissions 

in Variation A. Discounted from 2040 to the present at 8% results in estimated annual savings of ~$100 million 

USD. If Variation B is instead used as the comparator, the estimated savings increase to ~$300 million USD. 

http://www.ipprenewables.co.za/
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(http://www.csir.co.za/nationalwindsolarsea/), which is tasked with identifying geographic 

areas best suited for deployment, there are clear policy levers by which modeling results can 

be used to facilitate WSP project selection and siting on the ground. 

With respect to longer-term planning, both the Department of Energy (via the IRP) and 

Eskom (via its ongoing Strategic 2040 Transmission Network Study) are central to the prior-

itization of generating technologies and build-out of new transmission infrastructure. These 

decisions will be heavily dependent upon the expected cost and technical performance of 

alternative WSP deployment strategies. Selection of preferred strategies, from among the 

many possible, is likely prone to suboptimal outcomes in the absence of comprehensive 

(ideally probabilistic), spatiotemporal modeling. Given the long life-span of transmission 

infrastructure, the spatiotemporal variability of WSP resources, and the dependence of pro-

ject developers on grid access, well-informed coordination and planning is absolutely critical 

to securing clean, affordable, and reliability electricity for South Africa. 

South Africa is not the only country facing these issues. Over 135 countries have adopted 

national renewable energy targets. For larger countries, cost-effective exploitation of domestic 

WSP resources remains the immediate task. For smaller countries (and larger countries with-

in multinational power grids), there may be excellent and unexplored opportunities to collec-

tively harness regional WSP resources, reaping economic and environmental benefits while 

strengthening political ties with neighbors. Development of an integrated deployment and 

transmission plan to harness WSP resources across southern Africa, for example, could dra-

matically alter the economics of renewable energy in the region. Such “game-changing” re-

search requires detailed knowledge of the spatiotemporal properties of renewable resources 

over large areas. In general, the returns to spatiotemporal modeling will increase with the 

size of the geographic region under study. 

As countries seek to transition to power systems dependent upon intermittent WSP, the 

tools used to understand and plan such systems must evolve accordingly. This study demon-

strates that high-resolution, spatiotemporal data and associated modeling can identify WSP 

deployment strategies that offer significant savings over time. This does not necessarily re-

quire multi-year projects with large research teams and budgets. With sufficient support 

from in-country stakeholders, low-cost, open-source data and software like those used here 

are capable of capturing the most critical spatiotemporal dynamics. Research in this vein can 

help countries intelligently harness their unique WSP resources to address climate change, air 

pollution, and energy security in a cost-effective and reliable manner. 

  

http://www.csir.co.za/nationalwindsolarsea/
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