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1.  Introduction 

 

The recent history of extreme weather events suggests that significant climate change 

may have begun.  Severe drought lurks behind the Darfur conflict;
1
 a rising sea level has 

combined with subsidence and cyclone activity to drive thousands of people off islands in 

the Sundarbans of India and Bangladesh;
2
 and a World Meterological Organization report 

issued in August, 2007 linked global warming to unprecedented rainfall and flooding in 

South Asia and China.
3
  Warmer seas and greater atmospheric moisture seem to have 

increased the power of hurricanes, magnifying their destructive coastal impacts in Central 

America, the Caribbean, East Asia and South Asia.
4
  In a possible indicator of this trend, 

the year 2007 witnessed the first documented hurricane landfalls in Brazil and the 

Arabian Sea.
5
  The current year is tied with 1998 as the warmest on record,

 6
 with a 

notable surge of extremely damaging weather in Pakistan,
7
 Russia,

8
  China

9
 and 

elsewhere.   

Individual weather events can easily be ascribed to natural variation, so credible 

inferences about climate change require tests for significant shifts in the historical pattern 

of weather-related variables.  In developed countries, temperature and rainfall data are 

available from thousands of weather stations for periods as long as a century.  They 

permit rigorous analysis of climate stability, both at individual weather station sites and 

across broader areas.  Drawing on this information, a comprehensive assessment by the 

US National Oceanic and Atmospheric Administration (NOAA) concludes that 

significant climate change is occurring in the US (Karl, et al., 2009).  This finding is 

bolstered by IPCC (2007): "At continental, regional, and ocean basin scales, numerous 

long-term changes in climate have been observed.  These include … aspects of extreme 

weather including droughts, heavy precipitation, heat waves and the intensity of tropical 

cyclones." 

                                                 
1
  Faris (2007) 

2
  Sengupta (2007) 

3
  WMO (2007b) 

4
  Emmanuel (2005) and Webster (2006) 

5
  WMO (2007b) 

6
  NOAA (2010b) 

7
  New York Times (2010a) 

8
  Rionovosti (2010) 

9
  New York Times (2010b) 
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While scientific tests of weather data are clearly necessary for policy analysis, they 

are insufficient for two main reasons.  First, they cannot be replicated in many 

countries—particularly developing countries—where historical data are sparse.  Second, 

even where such assessments are possible, their conclusions are limited to statements 

about the distribution of potentially-damaging weather events.  These statements may tell 

us little about the consequences for particular communities, whose ability and willingness 

to invest in protective measures depends on local geographic conditions, incomes, 

discount rates, social norms, perceptions of local climate risk, and the costs of risk-

mitigation measures.  Complete insulation from climate risk is infeasible, even for the 

wealthiest communities, and affordable adaptive measures may leave poor communities 

exposed to recurrent losses in hazard-prone areas.            

Things may get much worse when the climate changes, as hundred-year floods 

become ten-year floods; coastal storm surges are amplified by sea level rise and more 

frequent, powerful hurricanes; destructive tornados increase in frequency and magnitude; 

drought-induced wildfires become larger and more widespread; and farmers are forced to 

cope with unfamiliar weather regimes.  Where large numbers of people have settled in 

―safe‖ areas on the periphery of historical hazard zones, rapid expansion of those zones 

may lead to huge losses before settlement patterns adapt.  And the effect may be 

compounded if the climate keeps changing in fits and starts, rather than slowly and 

predictably.    

In short, understanding vulnerability requires information on potential human impacts 

as well as scientific assessments of weather data.  The potential for quantifying such 

impacts is illustrated by the EM-DAT database, which is maintained by the Centre for 

Research on the Epidemiology of Disasters (CRED) at the Université Catholique de 

Louvain.  This database contains information on human losses from natural disasters in 

222 countries since 1900.  Among the disaster categories tracked by EM-DAT, five are 

particularly relevant for climate change analysis:  floods, droughts, extreme heat, wind 

storms and wild fires.     

Figures 1 and 2 illustrate overall trends in EM-DAT from 1970 to 2008.  Figure 1 

displays the global probability of being affected by an event in one of the five climate-

related disaster categories.  The data are smoothed using an 11-year centered moving 

average and accompanied by the regression trend line.
10

  They suggest a steady upward 

trend, with an annual increase of about 80 per 100,000.  Reported risk has roughly tripled 

since 1970, from 1,300 per 100,000 (or 1.3%) to 4,000 (or 4%).   

Figure 2 presents regional trends in the annual number of countries with climate-

related disasters in the five categories.  The figure displays country numbers as percents 

of regional totals for ease of comparison.  Numerically, total affected countries increased 

from 39 in 1970 to 103 in 2008: from 4 to 16 in Europe, 12 to 25 in Asia, 5 to 28 in 

                                                 
10

  Estimated by Prais-Winsten (AR 1): Trend coefficient 79.61; t-statistic 8.16 (significant at .001) 
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Africa, and 18 to 34 in the Americas.  In all four regions, the time lines suggest 

particularly rapid increases after 1990.  

 

Figure 1:  Global Climate Risk, 1970–2008: Probability of Being Affected by an Extreme 
Climate Event* (Per 100,000) 
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* Eleven-year centered moving average; trend estimated by Prais-Winsten (AR 1)    

Data source: EM-DAT (2010)  

 

Figure 2: Percent of Countries with Extreme Weather Impacts, 1970–2008* 
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* Five-year moving average  

   Data source: EM-DAT (2010) 
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Although the patterns displayed in Figures 1 and 2 are certainly consistent with 

climate change, there are other possible explanations.  The first is better coverage of 

extreme weather events, as registration of local weather disasters has improved.  The 

second possible explanation is population growth, which has increased the number of 

people who are potentially subject to extreme weather events.
11

  The third potential factor 

is rapid urbanization -- movement from traditional settlements that are adapted to their 

local environments to relatively unprotected sites in urban areas.  Governance may be a 

related factor, particularly the ability of public authorities to enforce restrictions on 

settlement in high-risk areas.  All four of these potentially-confounding factors – better 

information about disasters, population growth, rapid urbanization and weak regulation – 

may be most significant in developing countries.  And taken together, they might suffice 

to explain the patterns in Figures 1 and 2 even if no climate change had occurred.   

While these confounding factors may account for part of the increase in reported 

weather impacts since 1970, growth in per capita income has undoubtedly pushed in the 

opposite direction.  Extensive research suggests that income growth has a significant risk-

reducing impact, via greater willingness to pay for personal security, a lower discount 

rate, and greater support for public investments in risk reduction.
12

  This factor might 

cause reported losses to hold steady or even decline in the face of rapid climate change, 

as income growth reduced the vulnerability of affected communities.  And, to reverse the 

argument of the previous paragraph, the same ―masking‖ effect might characterize 

societies where improving governance promotes more climate resilience. 

In summary, we cannot understand the implications of climate change without 

quantifying its human impacts.  This requires extending research beyond weather pattern 

analysis to observed human impacts and the geographic and socioeconomic factors that 

influence them.  But this extension places additional demands on research, because it 

requires statistical analysis to separate the possible role of climate change from the 

effects of changes in other variables – income, governance, urbanization – that influence 

the human impact.   

Ultimately, such research is important for two reasons.  First, we cannot accurately 

assess the impact of climate change without quantitative analysis that controls for the 

concurrent influence of other factors.  And uncertainty about the magnitudes of impacts, 

and related costs, hinders intelligent collective action to control global carbon emissions.  

Second, our ability to cope with climate change depends critically on specific knowledge 

about where, when, and how much it will affect human communities.  Without such 

information, we cannot make rational decisions about allocating scarce resources for 

adaptation.   

                                                 
11

  Although the trend in Figure 1 normalizes by population, growth in the latter might still produce a 

disproportionate number of settlements where extreme weather events produce casualties beyond 

CRED’s reporting thresholds of 10 people killed or 100 affected. 
12

  See for example Blankespoor, et al. (2010). 
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This paper responds on both fronts with a global exercise that spans 233 states.  In 

Section 2, I marshal the available evidence to develop country impact indicators for three 

critical dimensions of climate change:  more extreme weather; sea level rise (SLR) and 

loss of agricultural productivity.  The extreme weather exercise requires new econometric 

work that focuses on two objectives:  separating the effects of climate change, income 

and governance, and estimating the effect of the latter two variables on vulnerability to 

climate change.  In the SLR exercise, the foundation is my previous work with co-authors 

for a subset of developing countries (Dasgupta, et al., 2009a,b).  This paper extends 

coverage to the full set of coastal and island states.  Similarly, my agricultural 

productivity exercise extends the ground-breaking work of Cline (2007) to the full set of 

233 states.  

After the impact indicators are constructed, Section 3 incorporates them in a 

methodology for cost-effective allocation of adaptation assistance.  The methodology can 

be applied easily and consistently to the entire set of 233 countries, or to any subset that 

may be of interest to particular donors.  It can address one problem (e.g., sea level rise 

alone) or all three.  Because institutional perspectives and priorities differ, I develop 

resource allocation formulas for three cases:  (1) Potential climate impacts alone, as 

measured by my indicators; (2) Case (1) adjusted for differential country vulnerability, 

which I estimate from my econometric results for extreme weather impacts; (3) Case (2) 

adjusted for donor concerns related to project economics: inter-country differences in 

project unit costs and probabilities of project success.   

In Section 4, I demonstrate the scope and flexibility of the methodology with separate 

illustrations for two contrasting cases:  specific assistance for adaptation to sea level rise 

by the 20 island states that are both small and poor; and general assistance to all low 

income countries for adaptation to extreme weather changes, sea level rise, and 

agricultural productivity loss.  I provide a summary, conclusions and discussion of 

potential implications in Section 5. 

 

2.  Quantifying Vulnerability to Changes in Extreme Weather, Sea Level Rise and 

Agricultural Productivity Loss   

 

2.1 Vulnerability to Changes in Extreme Weather 

 

2.1.1 Introduction to the CRED Database 

 

Cross-country econometric work on the impacts of climate-related disasters depends 

critically on the EM-DAT database, maintained by the Centre for Research on the 

Epidemiology of Disasters (CRED) at the Université Catholique de Louvain, Brussels.  

To be entered in CRED’s EM-DAT database, a natural disaster must involve at least 10 

people reported killed; 100 people reported affected; the declaration of a state of 
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emergency; or a call for international assistance.  Recorded deaths include persons 

confirmed as dead and persons missing and presumed dead.  Total affected persons 

include people suffering from disaster-related physical injuries, trauma or illness 

requiring medical treatment; people needing immediate assistance for shelter; or people 

requiring other forms of immediate assistance, including displaced or evacuated people.
13

  

CRED characterizes its methodology and information sources as follows: 

 

The database is compiled from various sources, including UN agencies, non-

governmental organizations, insurance companies, research institutes and press 

agencies. Priority is given to data from UN agencies, governments and the 

International Federation of Red Cross and Red Crescent Societies. …The entries 

are constantly reviewed for redundancy, inconsistencies and incompleteness. 

CRED consolidates and updates data on a daily basis. A further check is made at 

monthly intervals. Revisions are made annually at the end of each calendar year.
14

 

 

As I noted previously, the rapid increase in CRED-reported disasters since 1970 may 

reflect several factors besides climate change.  CRED itself provides a cautionary note 

(Revkin, 2009): 

 

CRED is fully aware of the potential for misleading interpretations of EM-DAT 

figures by various users … We believe that the increase seen in the graph until 

about 1995 is explained partly by better reporting of disasters in general, partly 

due to active data collection efforts by CRED and partly due to real increases in 

certain types of disasters. We estimate that the data in the most recent decade 

present the least bias and reflect a real change in numbers. This is especially true 

for floods and cyclones. Whether this is due to climate change or not, we are 

unable to say.
15

 

 

CRED’s disclaimer has two clear implications for the use of EM-DAT data.  First, the 

likelihood of confounding effects from improved information is high for the period 

before 1995.  Second, any credible attempt to impute climate change effects from 

recorded disasters must incorporate such confounding factors.  Accordingly, I limit my 

econometric assessment to the period since 1995 and introduce explicit controls for the 

four confounding factors noted in the introduction -- better information about disasters, 

population growth, rapid urbanization and weak regulation.   

 

                                                 
13

  For more information, see the EM-DAT glossary at http://www.emdat.be/criteria-and-definition. 
14

  Statement by EM-DAT/CRED, available online at http://www.emdat.be/frequently-asked-questions 
15

  Cited online at http://dotearth.blogs.nytimes.com/2009/02/23/gore-pulls-slide-of-disaster-trends/ 

http://www.emdat.be/criteria-and-definition
http://www.emdat.be/frequently-asked-questions
http://dotearth.blogs.nytimes.com/2009/02/23/gore-pulls-slide-of-disaster-trends/
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2.1.2  Model Specification and Data 

 

My core model specifies climate impact risk as a function of radiative forcing from 

atmospheric accumulation of CO2.  I define climate impact risk in year t as the 

probability that a representative individual will be affected by an extreme weather event 

in that year.  The radiative forcing attributable to a particular concentration level of 

atmospheric CO2 is  "...the rate of energy change per unit area of the globe as measured 

at the top of the atmosphere" (Rockström, et al., 2009).  By convention, radiative forcing 

is expressed in watts per square meter and measured relative to the pre-industrial 

atmospheric concentration of CO2 in 1750 (277 ppm).  Equation (1) provides a standard 

approximation to the relationship between radiative forcing and CO2 accumulation 

(IPCC 2001, Myhre, et al., 1998): 

 

(1) 
0

ln
C

C
F t

t   

where    ΔFt = Radiative forcing (W/m
2
) in year t 

  Ct = Atmospheric CO2 concentration in year t 

  C0 = Atmospheric CO2 concentration in reference year   

 

I embed this relationship in an estimating equation (2) that also incorporates income 

per capita and the confounding factors identified in the previous section.  In (2), β1 can be 

derived from estimation results once θ is specified (the standard approximation for θ is 

5.35 (IPCC 2001, Table 6.2)); Β0 can be estimated once θ and C0 are specified (the 

standard reference date for C0 is 1750, when the atmospheric CO2 concentration was 277 

ppm (Neftel et al., 1994)). 

 

(2)

it ivitR6βitI5βitlnU4βitlnN3βitlnY2βtθlnC1β]0θlnC0[β)itl(p  

  Expectations: β1, β3, β4, β5 > 0;  β2,  β6 < 0 

where l(pit) = The logit of the reported probability that a representative individual will 

be affected by an extreme climate-related event.  The logit of p is log[p/(1-

p)].  I use the logit transformation to impose natural [0,1] constraints on 

the probability.    

 Nit    =  Population  

 Uit    = Percent of the population in urban areas   

 Iit      = A measure of information transparency  

 Rit    = A measure of regulation quality  

 vi      = Unobserved country- and region-specific effects 

 εit     = A random error term     
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Prior expectations are positive effects on reported risk for the atmospheric CO2 

concentration, population, urban population percent and information transparency; and 

negative effects for income per capita and quality of regulation. 

To calculate reported risk for country i in year t, I divide total persons affected in the 

five disaster categories by total population.  I have drawn time series data on atmospheric 

CO2 concentrations from Neftel, et al. (1994) and Keeling, et al. (2007; updated to 2010).  

Annual data on population and percent urban are from the World Bank’s World 

Development Indicators database.
16

  Consistent time series measures for information 

transparency and regulation are difficult to obtain; I have used two indicators from 

Kaufmann, Kraay and Mastruzzi (KKM, 2009): Regulatory Quality (RQ) and Voice and 

Accountability (VA).  KKM construct VA from a number of indicators that  ―captur[e] 

perceptions of the extent to which a country's citizens are able to participate in selecting 

their government, as well as freedom of expression, freedom of association, and a free 

media.‖
17

  Neither variable is perfect for my purposes.  RQ focuses on private-sector 

development concerns, but I adopt it as a measure of regulatory capacity more generally.  

VA certainly captures key elements of transparency, which should positively affect the 

completeness of disaster reporting.  At the same time, the democratic governance 

components of VA might have countervailing effects by encouraging governments to 

invest in climate resilience (which would reduce risk, ceteris paribus).  My results for VA 

should therefore be interpreted as conservative estimates of transparency’s impact on 

disaster reporting. 

 

2.1.3  Panel Estimation Results 

 

Table 1 reports panel estimates for several versions of the model.  Prior experimentation 

revealed that the estimated coefficients for log(population) and log(percent urban) are not 

significantly different, so I have consolidated the two terms into the log of urban 

population (percent urban x population) for the estimates reported in Table 1.  I have also 

checked the robustness of the two KKM indicators, VA and RQ, through joint estimation 

with the other KKM indicators – Political Stability and Absence of Violence, 

Government Effectiveness, Rule of Law, and Control of Corruption.  None of the other 

KKM indicators is significant in any estimate.  I incorporate controls for 24 world 

subregions (listed in Appendix C) that I use for two purposes: checking for significant 

regional variation in climate responses to CO2 accumulation, and short-term forecasting 

for development of the risk indicator for extreme weather.
18

  I have checked for first-

                                                 
16

  Available online at http://databank.worldbank.org/ddp/home.do?Step=12&id=4&CNO=2 
17

  KKM (2009), p. 6. 
18

  Estimation by random effects continues to incorporate country effects in the models that include 

regional dummies. 

http://databank.worldbank.org/ddp/home.do?Step=12&id=4&CNO=2
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order autoregressive error in the panel estimates, and in no case is the autocorrelation 

parameter significant. 

 

Table 1: Determinants of Climate Risk, 1995-2008  
 

Dependent Variable - Logit Probability: Affected by Extreme Weather Event 

 

    (1)   (2) (3)    (4)    (5)    (6) 

 Random Fixed      Random Random Random Random 

  Effects Effects     Effects Effects Effects Effects 

 

Log CO2 Concentration 33.806 34.729 28.869 34.123 31.387 32.244  

 (7.44)** (3.93)** (6.55)** (7.61)** (6.89)**  (7.10)** 

Log GDP Per Capita PPP -1.223 -2.379  -0.988 -0.705 -.779 

   (5.76)** (2.98)**  (6.24)** (3.28)** (3.76)** 

Log Urban Population 0.424 1.694   0.365 0.360 

 (4.15)** (1.29)   (3.63)** (3.59)** 

KKM Voice and Accountability 1.209 1.646   1.089 2.693 [log] 

 (4.38)** (3.39)**   (3.75)** (3.85)** 

KKM Quality of Regulation -0.609 -0.736   -0.763 -1.641 [log] 

 (2.04)* (1.93)   (2.73)** (2.11)* 

Constant -208.484 -223.887 -181.910 -204.620 -196.106 -200.648 

 (7.84)** (6.16)**  (6.97)** (7.78)** (7.38)** (7.57)** 

Tests 

                                 Hausman:  χ
2
 6.90  

                    (p=.2282) 

Regional Dummies                        χ
2
 175.79** 

                         (p=.0000) 

Regional Interactions                 χ
2
 34.90** χ

2
 34.16**  χ

2
 28.17  

 With Log CO2 Concentration                (p=.0290) (p=.0349)   (p=.1354) 

Observations   2223   2223 2223   2223  2223    2223 

Countries    175    175  175    175   175     175 

    

Absolute value of z statistics in parentheses     

* significant at 5%; ** significant at 1%  

 

The first two columns of Table 1 present random  and fixed effects estimates for a 

model that incorporates the potential impacts of CO2 radiation-forcing, income per 

capita, urban population, information transparency and quality of regulation.  Random 

effects is preferable because it is more efficient, but its use depends on failure of the 

appropriate Hausman test to reject the null hypothesis of equal parameters in random  and 

fixed effects estimation.  Failure occurs in this case (χ
2
 = 6.90, p=.228), so I adopt the 

random effects estimator. 
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Column (1) provides random effects estimates.  All signs conform to expectations, 

and all coefficients are estimated with high levels of significance.
19

  As expected, I find a 

very strong negative impact of income per capita on climate vulnerability:  For each 1% 

increase in income, extreme weather risk for the representative individual falls by 1.2%.  

Conversely, urbanization increases vulnerability, as expected:  For each 1% increase in 

urban population, risk rises by 0.4%.  

 

Table 2: Distributions of VA and RQ 
 

     VA      RQ 

Min -2.35 -3.13 

Q1 -0.83 -0.66 

Median -0.01 -0.06 

Q3 0.90 0.77 

Max 1.83 3.41 

 

 Table 2 presents basic distributional information for the two KKM variables, Voice 

and Accountability (VA) and Regulatory Quality (RQ).  The best and worst performers 

are separated by 4.2 units for VA and 6.5 units for RQ.  In Table 1, an increase of one 

unit in VA increases the log of reported extreme weather risk by 1.2, which is obviously a 

large impact.  This result seems quite important for interpreting the CRED data, because 

it assigns a large, significant role to reporting quality even during the most recent period, 

which CRED has deemed most reliable for disaster reporting.  For RQ, an increase of one 

unit decreases the log of reported risk by 0.6.  This result increases in both size and 

significance in column (5), the full specification of the model that also incorporates 

regional fixed effects.
20

   

The result for CO2 concentration is the most important of the set, so it is worth 

considering in some detail.  I should begin by stressing the conservative underpinnings of 

this estimate.  First, I have limited the sample to the period 1995-2008, which has been 

judged most reliable by CRED itself.  Second, I have explicitly controlled for the effect 

of income and three variables – urbanization, reporting quality and regulatory quality – 

that are frequently cited as confounding factors in the interpretation of the CRED data.  

Finally, I have employed panel estimation techniques that explicitly control for 

                                                 
19

  While logit estimation is both theoretically and practically appropriate (particularly for forecasting), 

estimation using the log of probability yields estimates that are effectively identical within the sample 

range.  The estimates are identical at two decimal places for urban population, information 

transparency and quality of regulation; and identical at one decimal place for CO2 concentration and 

income per capita.  Column (6) of Table 1 presents log-log estimates to facilitate discussion of impacts 

and development of the resource allocation methodology in Section 3.   
20

  In this context, it is also worth noting that the KKM variables are scaled to a uniform mean across years.  

This means that they can account for country differences over time, but not for overall trends (e.g., 

generalized improvement in voice and accountability across all countries).   
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unobserved country effects.  This means that my results relate changes in risk to changes 

in the righthand variables, including the CO2 concentration.   

After introduction of these adjustments, the estimated CO2 parameter remains 

strikingly large and significant.  Controlling for other factors, the results indicate that a 

1% increase in the atmospheric CO2 concentration has been associated with an increase 

in extreme weather risk of about 30%.  When I hold the other factors constant at their 

sample mean values, the actual increase in CO2 concentration from 1995 to 2008 is 

associated with a 9.6-fold increase in risk.   

Columns (3) – (5) present results for alternative versions of the model.  The result in 

(3) is the bivariate estimate for CO2 concentration.  The estimated elasticity (28.9) is 

slightly lower than others because it incorporates the ―masking‖ effect of income growth 

without an explicit control for that variable.  Models (3) – (5) introduce regional 

interactions with CO2 concentration to test whether the climate change impact of 

atmospheric accumulation has differed significantly across regions
21

  The appropriate χ
2
 

tests reject the null hypothesis (no geographic variability) with very high confidence in 

(3) and (4), which exclude the effects of urban population growth, information quality 

and regulatory quality.  However, inclusion of these variables in (5) eliminates the 

significance of regional differences in climate change impacts, while confirming the 

importance of regional fixed effects in the determination of weather-related risk.
22

      

In summary, my results are strongly consistent with one global pattern of response to 

CO2 accumulation, once I account for country and regional differences in income 

growth, urbanization, information quality and regulatory quality.  This global response is 

both very large and basically stable across a variety of specifications.  The other 

righthand variables add to the explanatory power of the model, but in somewhat 

surprising ways.  Incorporating income actually increases the estimated effect of CO2 

accumulation, while adding the three ―confounding‖ variables eliminates apparent 

regional variability in climate response without significantly reducing the estimated CO2 

elasticity.   

The sheer size of this elasticity is alarming, because it bodes very ill for climate 

change as CO2 accumulation continues.  But it remains a challenge for interpretation, 

despite my explicit introduction of potentially-confounding factors.  Could a seemingly-

modest change in atmospheric CO2 concentration really promote such a sharp increase in 

weather-related risk?  To lend additional insight, Appendix A uses data from the US 

National Oceanic and Atmospheric Administration (NOAA) to analyze the relationship 

between CO2 accumulation and exposure of the US population to extreme precipitation 

since 1970.  This analysis relies entirely on weather and population data, not reported 

impacts, but I find an exposure response elasticity that is very close to the impact 

                                                 
21

  I use 24 world subregions, which are listed with constituent countries in Appendix C. 
22

  These fixed effects are also significant in (3) and (4), along with the interaction effects.  But the latter 

constitute the critical differentiating factor, so the table focuses on χ
2
 tests for regional interactions.  
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elasticities in Table 1.  The similarity may well be fortuitous, since the appendix covers 

only one climate variable for one country, but the magnitude of the estimate suggests that 

the elasticities in Table 1 are indeed plausible. 

 

2.1.4 Forecasting Near-Term Impacts 
 

The results in Table 1 shed useful light on several questions that have complicated the 

policy dialogue on adaptation assistance:   

 

 Where will significant impacts occur, how large will they be, and how quickly 

will they emerge?  Without an answer, we have no systematic basis for 

allocating assistance aid.   

 How can we distinguish problems attributable to historical weather patterns 

from problems caused by climate change?  Without some kind of distinction, 

we cannot credibly determine the ―additional‖ component that qualifies for 

assistance beyond standard development aid.   

 Should adaptation assistance distinguish between ―exogenous‖ vulnerability 

attributable to weather changes and ―endogenous‖ vulnerability that can be 

affected by policy?  The income elasticity results in Table 1 indicate that 

countries with successful economic growth strategies become far less climate-

vulnerable than their less-successful counterparts over time.  The results 

suggest that vulnerability also decreases markedly in countries whose urban 

development strategies incorporate effective control of land use in high-risk 

areas.  Ignoring endogenous vulnerability will introduce perverse incentives 

for aid recipients, because countries whose policies reduce vulnerability will 

receive significantly less adaptation assistance than countries with ineffective 

policies.   
 

Ultimately, the significance of these issues depends on orders of magnitude in 

measurement.  In this section, I use a short-term forecasting exercise to assess the 

relevant magnitudes.  Using Table 1 and trend extrapolation for the righthand variables, I 

estimate weather-related risks for all countries in 2015, and calculate the impact of 

changing climate vulnerability as the change in the probability of being affected 

(paffected) by a climate-related disaster from 2008 to 2015.  I perform this calculation for 

three cases:
23

   

                                                 
23

  I forecast using the results summarized in Table 1, column (5), including results for country and regional 

effects.  I forecast by country for two periods; 2008 and 2015; calculate the difference in the estimated 

probability of being affected by a weather-related disaster (paffected); and then add the difference to 

the median country value of paffected for 2000-2008 in EM-DAT.  Using median paffected ensures that 

each country forecast is anchored by observations in the dataset. 
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1. Trend change in CO2 accumulation; all other variables constant at 2008 

levels;  

2. Addition of forecast change in real income per capita (at purchasing power 

parity)
24

;  

3. Addition of trend changes in urbanization and regulatory quality.
25

   
 

Table 3 summarizes the distributions of results across 233 countries for paffected in 

2008; the three change cases; the estimated contribution of each factor to the forecast 

change for case 3 (all determinants included); and the % contribution to Δ paffected of 

the same factors.
26

  The most striking result in the table is the order-of-magnitude shift in 

median vulnerability, from 1.3 per 100,000 in 2008 to the range 9-10 in 2015.  This 

reflects the CO2 result in Table 1, with continued steady growth in accumulated CO2 

through 2015.  Inclusion of the other righthand variables affects the distribution, but 

much less than CO2.  My calculation of % contributions also reflects the dominance of 

accumulated CO2:  Its median contribution to change in risk is 74.1%, compared to 

12.1% for income and 14.6% for urbanization and regulation.  For clarity, I should note 

that the % contributions to risk change in Table 3 are presented in absolute terms for 

comparison of effect magnitudes. The signed effect of income is actually negative, for 

example, since increasing income reduces risk.   
 

                                                 
24

  I forecast from 2008 real GDP per capita at PPP, from the World Bank’s World Development Indicators.  

(WDI).  I draw forecast growth rates from Hughes ( 2009), who draws on a critical assessment of the 

IPCC’s SRES scenarios by Tol, et al. (2005).  Hughes develops a consensus economic projection by 

taking an average growth rate from five integrated assessment models. The Hughes estimates are 

similar to income growth estimates for the IPCC A2 Scenario (IPCC 2007a).  For countries excluded 

from WDI and Hughes, I convert UN current income data to purchasing power parity and forecast from 

average regional forecast growth rates for included countries, using the 24 subregions listed in 

Appendix C. 
25

  I hold information quality (KKM Voice and Accountability) constant at its 2008 level because I am 

interested in actual, not reported, change in climate risk. 
26

  I calculate the percent attribution serially for cases 1-3 in the following steps: (1) I calculate the 

absolute value (abs) of Δ paffected for the CO2-only case;  (2) I calculate abs (Δ paffected) for the 

addition of income per capita and subtract abs (Δ paffected) for CO2 only.  (3) I calculate abs (Δ 

paffected) for the addition of urbanization and regulation quality and subtract abs (Δ paffected) for 

CO2 and income.  I normalize by the sum of the three increments to obtain percent contributions.  

These results are not invariant to the sequence of calculations.  Reversing the sequence (first 

urbanization/regulation, then income, then CO2) shifts the allocation toward CO2 even more.  For 

comparison, the paired distribution medians for the original (in Table 3) and reversed sequences are 

CO2 (74.1, 88.5); income (12.1, 5.3), urbanization/regulation (14.6, 6.5). Reversing the order of 

calculations does not change the results in the final column of Table 3 (% of 2015 vulnerability due to 

climate change during 2008-2015, based on inclusion of all righthand variables). 
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Table 3:  Distributions of Vulnerability Change Results 

 
Risk (Probability of Extreme Weather Impact)             

(Per 100,000 Population) 

Percent Contribution to Risk 

Change, 2008-2015 
 

 

 

 

 

 

 

Country 

 

 

 

 

 

 

2008 

 

 

 

 

2015 

Climate 

Only 

 

 

 

 

2015 

Climate          

+ Income 

 

 

2015                        

Climate                    

+ Income           

+ Urbanization   

+ Regulation 

 

 

 

 

 

 

Climate 

 

 

 

 

 

 

Income 

 

 

 

 

 

Urbanization 

+ Regulation 

2015 

Risk % 

Due to 

Climate 

Change 

(2008-

2015) 

Min 0.001 0.044 0.036 0.026 21.56 0.94 0.06 0.00 

10th Pct. 0.013 0.424 0.352 0.331 56.96 4.14 3.12 16.52 

Q1 0.050 2.070 1.841 1.498 64.42 8.46 6.31 45.17 

Median 1.270 10.204 9.155 9.917 74.09 12.12 14.57 74.24 

Q3 45.848 109.450 102.463 106.877 79.93 15.22 23.52 94.78 

90th Pct. 442.818 875.569 800.145 964.163 85.10 17.24 31.83 99.01 

Max 13,708.860 25,072.160 19,932.540 17,719.590 94.73 22.21 77.50 99.97 

 

The large jump in median risk is also reflected in the final column of Table 3:  Across 

233 countries, the median percent of 2015 weather risk attributable to climate change 

after 2007 is 74.2%.  For the top quartile, it increases to nearly 95%.  This result provides 

an important perspective on the question that crops up after each climate catastrophe:  

was it ―normal,‖ or a reflection of climate change?  My evidence suggests strongly that, 

for many countries, the likelihood is now very high that an extreme weather event reflects 

climate change, not a random draw from the historical distribution of weather events. 

 

Table 4 illustrates results in the same format for the 20 most vulnerable countries in 

2015.  I have added rankings for the most complete specification of vulnerability 

(including CO2, income, urbanization and regulation) to facilitate comparison.  The most 

striking feature is the status of China and India (respectively 1
st
 and 3

rd
 among 233 

countries) which rank at the top in risk (the probability of impact from an extreme 

weather event) as well as population.  China’s risk increases fourfold, from 6% (6,772 

per 100,000) to 25%, while India’s increases more than fourfold, from 2.6% of the 

population to 11.7%.  Sandwiched between China and India is tiny Djibouti, whose risk 

remains roughly stable (13.7% in 2008, 14.3% in 2015).  Inspection of the remaining 17 

countries reveals a very broad regional distribution, with 7 in Africa, 6 in Asia and 4 in 

Latin America and the Caribbean.  Of the top 20 countries in 2015, only one (Bolivia) 

was outside the top 20 in 2008, and it was 21
st
.  Within the top 20, however, there is 

considerable movement, with relatively rapid increases in risk for Bangladesh and 

Bolivia, and slower increases for Ethiopia, Cuba, Zambia and Zimbabwe.  These patterns 

reflect the general pattern displayed by the distributional information in Table 3:  The 

main driver behind changed climate risk has been atmospheric CO2 accumulation, whose 

global impact does not differ significantly across regions.  This acts like a common 

multiplier for all countries (dampened somewhat for higher-risk countries by the logit 
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specification), so the countries with highest risk in 2008 remain so in 2015, at 

substantially higher levels of risk in many cases.  At the same time, second-order effects 

from changes in income, urbanization and regulatory quality cause positions to shift 

somewhat among neighboring countries in the 2008 rankings. 
 

Table 4: Extreme Weather Risk: Top 20 Countries in 2015 
 

  

Vulnerability: Probability of Extreme Weather Impact 

(Per 100,000 Population 

 

 

Percent Contribution to Vulnerability 

Change, 2008-2015 

 

 

 

 

 

 

 

Country 

 

 

 

 

 

 

Rank 

2008 

 

 

 

 

 

 

Rank 

2015 

 

 

 

 

 

 

 

2008 

 

 

 

 

 

2015 

Climate 

Only 

 

 

 

 

 

2015 

Climate          

+ Income 

 

 

2015                        

Climate                    

+ Income           

+ 

Urbanization   

+ Regulation 

 

 

 

 

 

 

 

Climate 

 

 

 

 

 

 

Income 

 

 

 

 

 

Urbanization 

+ Regulation 

2015 

Risk % 

Due to 

Climate 

Change 

(2008-

2015) 

China 3 1 6,772 25,072 19,933 17,720 71.3 20.0 8.6 61.78 

Djibouti 1 2 13,709 14,281 14,167 14,331 67.3 13.4 19.3 4.34 

India 7 3 2,599 11,704 9,531 9,153 78.1 18.6 3.2 71.61 

Kenya 2 4 6,807 7,752 7,620 7,617 87.5 12.3 0.2 10.64 

Somalia 8 5 2,382 4,011 3,807 5,482 46.4 5.8 47.7 56.55 

Mozambique 4 6 4,576 5,133 5,028 5,269 61.6 11.7 26.7 13.14 

Philippines 10 7 2,134 5,161 4,607 5,102 74.2 13.6 12.2 58.18 

Bangladesh 19 8 823 5,487 4,611 4,844 80.8 15.2 4.0 83.01 

Sri Lanka 6 9 3,458 4,304 4,072 4,558 54.1 14.8 31.1 24.12 

Ethiopia 5 10 3,791 4,892 4,747 4,540 75.8 10.0 14.2 16.51 

Vietnam 11 11 1,904 4,696 4,121 3,834 76.4 15.7 7.9 50.33 

Bolivia 21 12 638 1,508 1,362 3,573 27.0 4.5 68.5 82.14 

Hong Kong (China) 17 13 1,251 3,877 3,147 2,413 64.2 17.8 18.0 48.13 

Cuba 9 14 2,190 2,221 2,213 2,227 59.0 15.2 25.8 1.63 

Madagascar 14 15 1,314 2,203 2,076 2,122 83.6 12.0 4.4 38.09 

Honduras 18 16 1,237 2,303 2,148 2,104 84.2 12.2 3.5 41.19 

Thailand 16 17 1,271 1,996 1,813 1,863 75.7 19.1 5.2 31.77 

Zambia 12 18 1,718 1,877 1,847 1,853 81.5 15.3 3.2 7.32 

Colombia 15 19 1,299 2,026 1,892 1,781 74.8 13.8 11.4 27.08 

Zimbabwe 13 20 1,692 1,714 1,709 1,721 55.3 13.2 31.5 1.69 

 

2.1.5  Policy Implications 
 

In the recent policy dialogue on adaptation to climate change, much attention has focused 

on the distinction between the current climate regime and future changes in that regime 

attributable to atmospheric CO2 accumulation.  Coping with the current regime is 

understood to be a standard development problem, and it is obviously an important one 

for many countries.  Coping with a future CO2-induced change in that regime, on the 

other hand, is widely understood to lie in the domain of ―additionality‖ for aid donors. 
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The results in Table 1 have a number of implications for this discussion.  First, they 

suggest that the future has already arrived:  Controlling for other factors, my results 

imply a nearly-tenfold increase in extreme weather risk during the past fifteen years.  

Clearly, the domain of additionality is already quite large, and promises to continue 

growing rapidly as CO2 accumulates in the atmosphere.  Second, my results suggest that 

aid donors face an inescapable strategic choice between two approaches to judging 

climate vulnerability, and therefore additionality.  As the results in column (5) show, 

changes in extreme weather risk have a powerful exogenous component because the CO2 

elasticity is very large and invariant across regions.  But the endogenous component is 

also large, because national policies can have major effects on income growth, 

urbanization, and regulatory quality.
27

   

Should donors interested in adaptation to changes in extreme weather base allocation 

decisions only on the common CO2 effect, or should they also incorporate the effects of 

the endogenous determinants?  The former case is much simpler, because no regional 

distinctions apply:  Tomorrow’s rank ordering of countries will be the same as today’s, 

and the current climate regime provides adequate information for determining adaptation 

assistance.
28

  But the latter case seems compelling, because the endogenous components 

obviously do matter a lot.   If donors respond to both the endogenous and exogenous 

components of vulnerability, then there will be an unavoidable, perverse effect:  

Countries whose policy regimes increase vulnerability will receive more assistance than 

countries with more effective policies, ceteris paribus.  Whether this is a very important 

factor depends entirely on the measured effects of the relevant variables.  An additional 

contribution of the results in Table 1 is to make such quantification and comparison 

possible.  I will return to this issue on a more general plane after presenting results for sea 

level rise and agricultural productivity loss, which reveal significantly different patterns 

across countries. 

 

2.2  Vulnerability to Sea Level Rise 

  

This section extends previous work with co-authors (Dasgupta et al., 2009a,b) to much 

broader coverage of coastal and small island states.  Climate change will increase coastal 

risk for two reasons.  First, coastal inundation and heightened storm surges will 

accompany a rising sea level as thermal expansion and ice cap disintegration continue.  

Recent evidence suggests that sea level rise could exceed 1 meter during this century 

                                                 
27

  I exclude reporting quality from this list because it relates to disaster reporting, rather than the actual 

incidence of disasters. 
28

  Although the rank-ordering will remain the same if the endogenous factors are ignored, the relative 

size of CO2 effects will change because the model is logistic:  The marginal risk impact of CO2 

accumulation declines as the risk grows.  So cross-country risks will tend to converge over time, while 

preserving the same rank order (because the underlying relationship is monotone-increasing). 
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(Dasgupta, et al. 2009a; Rahmstorf 2007; Rahmstorf, 2010).  Second, a warmer ocean is 

likely to intensify cyclone activity and heighten storm surges.
29

  Greater surges will move 

further inland, threatening larger areas than in the past.  In addition, both natural increase 

and internal migration are increasing vulnerable populations in coastal regions.  Table 5 

shows that global population in low-elevation coastal zones grew from 544 million in 

1990 to 636 million in 2000 -- 17% in a single decade.  The increase has been particularly 

rapid in Africa (27%) and Asia (18%).    

 

Table 5: Population in Low-Elevation Coastal Zone (LECZ), 1990 – 2000 
 

 LECZ Population (Million) 

Region 1990 2000 Increase 

Africa 46.2 58.5 12.2 

Asia 394.7 465.8 71.2 

Europe 49.0 50.2 1.3 

Latin America & Caribbean 28.6 33.2 4.6 

North America 21.8 24.2 2.3 

Oceania 3.6 4.2 0.6 

    

Total 543.9 636.2 92.3 

 

Source: CIESIN (2010) 

 

To quantify vulnerability for 192 coastal and small island states, I have drawn on 

several sources: estimated areas and populations of storm surge zones in 83 countries 

from Dasgupta, et al. (2009b); estimated areas and populations of low-elevation coastal 

zones in 181 countries from CIESIN (2010) and McGranahan, et al. (2007); 

topographical information from WorldAtlas.com (2010) and the US Central Intelligence 

Agency (2010); and national population data from the US Census Bureau (2010), the 

United Nations (2010), the US Central Intelligence Agency (2010), the Government of 

Australia (2010), the Tokelau Statistics Unit (2010), and reports for other small island 

principalities.  I estimate risk indices for 2008 and 2050 in a multi-stage exercise that 

sequentially estimates the areas of low-elevation coastal zones (LECZs); areas of storm 

surge zones within LECZs; and populations within the storm surge zones. 

 

                                                 
29

 A sea-surface temperature of 28
o
 C is considered an important threshold for the development of major 

hurricanes of categories 3, 4 and 5 (Michaels et al 2005; Knutson and Tuleya 2004). 
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2.2.1 Low-Elevation Coastal Zones
30

 

 

CIESIN (2010) provides area estimates for LECZs in 181 countries.  For the 

remaining 11 of 192 coastal countries, I develop estimates from a regression model that 

relates the LECZ share of total area to two variables:  the insularity index (total coastline 

length/total area), which should be positively related to the LECZ share; and maximum 

elevation in the country, which should be negatively related to the LECZ share.  The 

Caribbean states of Dominica and the Bahamas provide a useful illustration of the latter 

factor.  The two countries have similar insularity indices (Bahamas 25.5; Dominica 19.2) 

but Bahamas is very low-lying (maximum height 63 meters) while Dominica rises steeply 

from the coast to mountainous terrain (maximum height 1,447 meters).  Dominica’s steep 

rise causes its LECZ share (4.6%) to be far lower than the Bahamas’ (88.4%). 

 

Table 6:  Determinants of Coastal Zone Area Shares 
 

Dependent Variable:  Logit Low-Elevation Coastal Zone 

                                   Share of Total Area 

 

Log Insularity 0.543 

 (11.66)** 

Log Insularity Squared -0.044 

 (3.30)** 

Log Maximum Elevation -1.358 

 (4.16)** 

Log Maximum Elevation Squared 0.067 

 (2.48)* 

Constant 3.112 

 (2.99)** 

Observations 181 

R-squared 0.68 

 

Absolute value of t statistics in parentheses  

* significant at 5%; ** significant at 1%  

 

My regression model relates the logit of LECZ share to log insularity and log 

maximum height.  I include squared terms to allow for diminishing marginal effects.  The 

regression result for 181 countries (Table 6) is robust (R
2 

= .68), has the expected 

parameter signs, and has high levels of significance for both variables.  Both second-

order terms are significant, with signs that indicate diminishing marginal effects.  I use 

                                                 
30

  Following CIESIN (2010), I define the low-elevation coastal zone as the coastal area that is less than 10 

meters above sea level. 
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the results to estimate LECZ shares for the 11 coastal and island states that are excluded 

from the CIESIN database.
31

  

 

2.2.2 Storm Surge Zones 

 

This exercise builds on results for 83 countries by Dasgupta, et al. (2009b), who estimate 

present and future areas that are vulnerable to storm surges.  The future estimates assume 

1 meter of sea level rise and a 10% increase in average storm intensity.  For the 

remaining 109 coastal and island states, I develop estimates from a regression model that 

relates the surge zone share (SZS) of total area to the LECZ share of total area and the 

insularity index.  I use a second-order approximation, regressing the logit of SZS on the 

logs of LECZ share and insularity, their interaction, and their squares.  I also incorporate 

fixed effects for the 24 regions listed in Appendix C.  Table 7 reports the results, which 

are robust for both present and future areas (R
2
 = .94 in both cases) and highly 

significant, except for the log of the insularity index.  I use these results to estimate SZS 

for the 109 coastal and island countries excluded by Dasgupta, et al. 

 

Table 7:  Determinants of Future Storm Surge Zone Shares 
 

Dependent Variable: Logit Future Storm Surge Zone/Total Area   

  

  (1)    (2) 

 Future Present 

LA: Log(LECZ Area/Total Area) 1.039 1.042 

 (7.29)** (7.02)** 

LI: Log Insularity Index -0.099 -0.060 

 (0.80) (0.46) 

LA x LI 0.221 0.208 

 (2.84)** (2.56)* 

LA Squared -0.099 -0.103 

 (2.36)* (2.36)* 

LI Squared -0.135 -0.123 

 (3.26)** (2.87)** 

Constant -4.944 -5.408 

 (10.55)** (11.08)** 

 

Observations 83 83 

R-squared 0.94 0.94 

 

Absolute value of t statistics in parentheses * significant at 5%; ** significant at 1% 

                                                 
31

  The excluded countries and principalities are Gaza, Guernsey, Saint Barthelemy, Pitcairn, Svalbard and 

Jan Mayen, Jersey, Saint Helena, Norfolk Island, Tokelau, Kiribati and Saint Martin. 
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2.2.3 Population Densities in Low Elevation Coastal Zones 

 

CIESIN (2010) provides population density estimates for LECZs in 181 coastal countries.  

For the remaining 11 countries, I develop estimates from a regression model that relates 

LECZ population density to national population density, the LECZ share of national area, 

and maximum elevation.  I also incorporate fixed effects for the 24 regions listed in 

Appendix C.  Table 8 presents the results of the log-log estimation exercise.  Prior 

experimentation with second-order effects revealed significance only for the squared log 

of the LECZ share in national area.  The results are robust (R
2
 = .86), and all variables are 

highly significant.  The parameter estimates indicate a high positive elasticity for national 

population density; a negative elasticity (with diminishing marginal effect) for LECZ 

area share; and a negative elasticity for maximum elevation (i.e., LECZ density is lower 

in countries whose territory rises more rapidly into the interior).  I use these results to 

estimate LECZ population densities in 2008 for the 11 states that are excluded from the 

CIESIN database.
32

  Then I project LECZ densities in 2050 by assuming that LECZ 

populations change at the same rate as projected national populations.  

 

Table 8: Determinants of LECZ Population Density 
 

Dependent Variable: Log LECZ Population Density 

Log Country Population Density 0.842 

 (20.29)** 

LA: Log (LECZ Area/Total Area) -0.163 

 (3.55)** 

LA
2
 -0.039 

 (3.12)** 

Log Maximum Elevation -0.137 

 (2.57)* 

Constant 2.513 

 (3.29)** 

Observations 181 

R-squared 0.86 

Absolute value of t statistics in parentheses  

* significant at 5%; ** significant at 1%   

 

                                                 
32

  See the previous footnote for the list of excluded states. 
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2.2.4  Quantifying Risk 

 

Following the extreme-weather approach, I define risk from sea level rise (SLR) as the 

probability that an individual resides in a zone threatened by storm surges.  To estimate 

SLR risk in 2008, I multiply LECZ population density in 2008 (from 2.2.3 above) by 

storm surge zone area (obtained by multiplying national area by the LECZ share (from 

2.2.2 above).  Then I divide by national population to obtain the probability of residence 

in a threatened area in 2008.   

For the future estimate, I assume changes by 2050 that are half those forecast for 

2100 by Dasgupta, et al. (2009b).  I use national population forecasts for 2050 from the 

US Census Bureau (2010) and the UN (2010).  For countries without forecasts, I apply 

average population growth rates for their regions (using the 24 regions listed in Appendix 

C).  Then I compute future LECZ population densities and replicate the calculations 

described above to obtain vulnerability estimates for 2050. 

Table 9: Top 20 Countries: Risk From Sea Level Rise, 2008 and 2050 
 
  

Rank 

Population %  

at Risk 

Country 2008 2050 2008 2050 

Qatar 3 1 28.3 35.1 

Bahamas 4 2 24.4 33.3 

Bahrain 2 3 30.6 32.7 

Kuwait 1 4 32.4 29.8 

Tuvalu 6 5 20.9 27.7 

Cook Islands 8 6 16.4 27.4 

Guinea-Bissau 5 7 23.0 26.3 

Turks and Caicos Islands 7 8 17.0 21.1 

Marshall Islands 9 9 16.4 20.3 

Saint Pierre and Miquelon 11 10 13.3 20.3 

Denmark 14 11 12.7 18.6 

Cayman Islands 10 12 14.9 18.2 

Falkland Islands 16 13 12.1 17.8 

Pitcairn 12 14 13.0 17.0 

Maldives 15 15 12.7 16.1 

Svalbard and Jan Mayen 24 16 10.4 15.7 

Wallis and Futuna 20 17 11.1 15.3 

Monaco 22 18 10.6 15.2 

Tunisia 17 19 12.0 15.0 

United Arab Emirates 13 20 12.8 14.0 

 

Tables 9 and 10 illustrate my results for the top 20 countries, ranked by risk  

(probability of residence in a threatened zone) and population at risk.  In Table 9, 12 of 

the 20 highest-risk countries are small island states or principalities; 4 are small Persian 

Gulf states; 2 are in Europe (Denmark, Monaco); and 2 in Africa (Guinea-Bissau, 
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Tunisia).  Future risk incorporates both projected sea level rise and projected population 

change, which is negative in some cases.  Among the top 20 countries, however, only 

Kuwait has a projected population decrease sufficient to offset the effect of a larger storm 

surge zone.  The results indicate substantial increases in risk for many countries, 

particularly Qatar (from 28.3% to 35.1% of the population in threatened areas), the 

Bahamas (24.4% to 33.3%), the Cook Islands (16.4% to 27.4%), Saint Pierre and 

Miquelon (13.3% to 20.3%) and Denmark (12.7% to 18.5%).  The storm surge results 

resemble the extreme weather results in the stability of rankings over time.  Of the top 20 

countries in 2050, only 2 are ranked lower than 20th in 2008, and they are near-neighbors 

at 22 (Monaco) and 24 (Svalbard and Jan Mayen). 

When my results are summarized for all 192 coastal states and principalities, they 

indicate total vulnerable populations of 156.4 million in 2008 and 266.9 million in 2050.  

In contrast to the dominance of small states in Table 9, the states with the greatest 

vulnerable populations in Table 10 are large coastal countries in Asia (12), Africa (3), 

Europe (3), Latin America (1) and North America (1).  Again, the rankings are quite 

stable over time:  Of the top 20 states in 2050, 19 have the same status in 2008.  And the 

sole exception, Mozambique, ranks 25
th

 in 2008. 

  

Table 10:  Top 20 Countries – Population at Risk From Sea Level Rise, 2008 and 2050 
 
  

 

Rank 

Vulnerable 

Population 

(Million) 

Country 2008 2050 2008 2050 

India 1 1 20.6 37.2 

Bangladesh 3 2 13.2 27.0 

China 2 3 16.2 22.3 

Indonesia 4 4 13.0 20.9 

Philippines 6 5 6.5 13.6 

Nigeria 9 6 4.3 9.7 

Vietnam 7 7 5.7 9.5 

Japan 5 8 9.8 9.1 

United States 10 9 3.8 8.3 

Egypt, Arab Rep. 17 10 2.1 6.3 

United Kingdom 11 11 3.3 5.6 

Korea, Rep. 8 12 4.8 5.3 

Myanmar 12 13 2.8 4.6 

Brazil 14 14 2.6 4.5 

Turkey 13 15 2.6 3.9 

Malaysia 18 16 1.9 3.5 

Germany 15 17 2.3 3.3 

Italy 16 18 2.1 2.9 

Mozambique 25 19 1.2 2.8 

Thailand 19 20 1.8 2.6 
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2.3 Agricultural Productivity Loss 

 

I supplement the new results on extreme weather and sea level rise with estimates of 

future agricultural productivity change based on the results of Cline (2007).  The Cline 

dataset includes single estimates with and without carbon fertilization for many countries, 

and estimates for multiple regions in large countries.  For large countries, I use median 

regional values for this exercise.  I use Cline’s preferred estimates, without carbon 

fertilization.
33

  

After drawing agricultural productivity change forecasts for 113 countries from the 

Cline dataset, I complete my 233-country dataset as follows:  I calculate median 

agricultural productivity changes for the 24 geographic subregions listed in Appendix C.  

Wherever possible, I use these median values to replace missing country values within 

subregions.  Cline’s results are broadly distributed geographically, so this procedure 

provides estimates for an additional 84 states.  The remaining 36 states are all islands in 

the Atlantic, Indian and Pacific Oceans that have no natural comparators.  For those 

states, I use the global median agricultural productivity loss forecast by Cline (20.5%). 

Cline forecasts for the period through 2080.  For this exercise, I match the forecast 

interval for storm surge threats and assume that half the forecast agricultural productivity 

change occurs by 2050.  Table 11 provides median forecasts of agricultural productivity 

loss through 2050, by subregion.  I have ordered the data from highest to lowest 

productivity loss.  Cline’s forecasts are based on midrange IPCC emissions forecasts; 

central tendencies in temperature and precipitation across a number of Global Circulation 

Models; and combined estimates from technical and economic models of farmers’ 

responses to changing weather conditions.  The extreme weather trends cited in this 

paper, coupled with recent global carbon emissions estimates, provide ample evidence 

that the assumptions underlying Cline’s estimates are realistic.  The implications for 

many developing countries are clearly serious, with forecast losses greater than 10% in 

all developing regions outside of Asia, and substantial losses in all Asian regions except 

China.  Here I should note that the forecast for China is the median:  Significant 

productivity losses are forecast for some regions, but these are largely balanced by 

forecast productivity gains in others. 

                                                 
33

  Cline’s preferred estimates (without carbon fertilization) have an effectively-perfect linear association 

with the estimates with carbon fertilization for the 114 countries in his dataset (R
2
=1.00, t=2,137) 

because they differ by a constant amount.  The significance of my choice of Cline’s preferred estimates 

is case-specific. The methodology developed in this paper uses relative, not absolute, indicator values 

to allocate shares of resources for adaptation assistance.  Therefore, the choice of fertilization mode 

has a negligible effect on allocations when all countries have forecast productivity losses for both 

modes, because their relative losses are nearly identical.  However, allocation results are affected in 

cases where some countries have productivity gains forecast with carbon fertilization and losses 

forecast without fertilization.  For those countries, my use of Cline’s preferred (non-fertilization) 

estimates results in larger assistance allocations than in the converse case.    
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Table 11: Forecast Agricultural Productivity Losses by Region:  
     2008–2050 

 

 

 

 

Region 

Median Forecast 

Agricultural 

Productivity 

Loss, 2008-2050 

(%) 

Central Africa 19.80 

Caribbean Islands 19.65 

Southern Africa 18.95 

North Africa 18.00 

Sahelian Africa 17.05 

Coastal West Africa 16.35 

Andean South America 14.85 

Middle East 13.50 

Madagascar 13.10 

Northern South America 12.83 

Southern South America 12.20 

Central America 11.85 

Southeast Asia 11.70 

Southern Asia 10.45 

East Africa 10.25 

Australia / New Zealans 5.30 

Western Asia 4.50 

Eastern Europe 4.08 

Northeast Asia 3.65 

Western Europe 2.50 

North America 1.65 

China 1.50 

 

3.  Implications for Resource Allocation 

 

3.1  Vulnerability Indicators and Efficient Resource Allocation 

 

In this paper, I construct risk indicators for 233 states that combine short- and long-term 

factors:  changes in extreme weather risks from 2008 to 2015, and risks associated with 

storm surges and agricultural productivity loss from 2008 to 2050.  As I noted in the 

introduction, actual vulnerability to climate change depends on the interaction of these 

risks with determinants of resilience: economic development, demographic change, and 

governance.
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Risk and vulnerability indicators can contribute to efficient allocation of resources for 

increasing climate resilience.
34

  Resource-constrained donor institutions are interested in 

promoting significant resilience improvements for the group of countries they choose to 

assist, while striking a balance between maximizing overall gains, ensuring at least some 

support for all countries in the group, and incorporating the likelihood of diminishing 

returns to investment in each country.
35

  These objectives can all be served by 

constructing a composite vulnerability indicator that assigns weight to both climate risks 

and the determinants of resilience.  Equipped with this indicator, donor institutions can 

achieve a reasonably efficient allocation by assigning per-capita project resources to 

countries in proportion to their indicator values, with adjustments for country differences 

in average project costs and the likelihood of project success.  I provide a formal 

demonstration of this proposition in Appendix B.  

In recent years, donor institutions such as IDA, the Asian Development Bank (ADB) 

and the African Development Bank (AfDB) have adopted this approach to resource 

allocation.
36

  All four institutions allocate development assistance in proportion to 

country scores computed from the following formula (IDA, 2007):   

 

 (3) 

[Problem Index (V)]
β1 

x [Project Success Probability Index (G)]
β2 

x [Population (P)]
β3

  

      = V
β1

G
β2 

P
β3

 

 

The essential problem is poverty for the development banks,
37

 so their problem index 

is income per capita (and β1 is given a negative exponential weight: -0.125 for IDA and 

AfDB; -0.25 for ADB ).  Various combinations of governance indicators are used as 

                                                 
34

  For an introduction to this approach in a broader environmental context, see Buys, et al. (2003). 
35

  Technically, the donor’s objective function cannot realistically be characterized as linear (infinite 

elasticity of substitution across countries) because sole allocation to one country within the set is not 

desirable on a priori grounds, whatever the relative scale of its problems.  Some representation for all 

countries in the qualifying set is implied by the original choice of countries to be assisted.  At the same 

time, the donor’s objective function is not purely fixed-coefficient (zero elasticity of substitution across 

countries), because nothing forces it to maintain cross-country parity in per-capita allocation.  This is 

undeniably a good thing because the distribution of climate vulnerability across countries is very 

different than the distrubtion of population.  For resource allocation, then, an intermediate 

assumption appears warranted: a positive, finite elasticity of substitution across countries, which 

implies a CES (constant elasticity of substitution) donor welfare function.  I have opted for a Cobb-

Douglas (unit-elastic) function because it implies a simple allocation formula that is easy to compute 

and intuitively plausible to practitioners.     
36

  Recent parallel work at the World Bank by Barr, et al. (2010) has investigated  how adaptation 

assistance can be allocated in a transparent, efficient and fair way.  The authors propose an approach 

based on three criteria: climate change impacts, adaptive capacity, and implementation capacity. 
37

  The GEF has adopted a similar approach for its allocation of resources to biodiversity conservation 

programs.  In the GEF case, the problem index is specified using a cross-country biodiversity measure. .    
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proxies for project success probability, and all three MDBs assign the same positive 

weight to this factor (2.0).  Population provides the scaling factor; IDA and the African 

Development Bank assign it full weight (β3 = 1), while the Asian Development Bank uses 

a partial weight (β3 = 0.6). 

For this paper the problem is climate vulnerability, whose critical components in the 

extreme weather case are given by econometric equation (2) in anti-log form: 

 

(4) V = C
α1 

Y
α2

 G
α5 38

 

where C = Atmospheric CO2 accumulation 

  Y = Income per capita 

  G = KKM Regulatory Quality  

 

Translating (4) to change in vulnerability, the climate driver is the change in atmospheric 

CO2 concentration, holding Y and G constant: 

 

(5) 3211

111][


 tttt GYCCV  

 

In a more general expression, the climate driver is the difference in environmental 

conditions (D) attributable to carbon emissions: 

 

(6) 32

11



 tt GDYV  

 

This paper focuses on three climate-driven variables with per-capita scaling:  the 

change from 2008 to 2015 in the probability that an individual will be affected by an 

extreme weather-related event (W), holding other vulnerability factors constant in (5); the 

change from 2008 to 2050 in the probability that an individual will be a resident of a 

coastal area threatened by sea level rise (R); and the percent change in productivity from 

2008 to 2050 for an individual engaged in agriculture (A).  The three variables are not 

measured in comparable units, and I have no basis for weighting their relative importance 

for welfare.  Accordingly, I rescale each variable to an indicator with a maximum value 

of 100 for parity in computations.   

Each of the three indicators – W, R, A – can be used for a separate allocation exercise 

when a donor institution focuses on one problem.  For combined exercises, it seems 

reasonable to aggregate with weights proportional to the sizes of directly-affected groups: 

the national population (PT) for extreme weather, the population of the coastal storm 

surge zone (PR) for sea level rise, and the rural population (PA) for agricultural 

                                                 
38

  I also incorporate two other variables: the KKM Voice and Accountability index, but as a control for 

completeness of disaster reporting, not for climate vulnerability; and urban population, which I hold 

constant for the allocation exercise. 
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productivity change.  Weighting by group size relative to national population, the 

aggregate climate change index is:  

 

(7) D = W + ρRR + ρAA, where ρR = PR/PT and ρA = PA/PT 

 

Replicating the MDB allocation formula requires an appropriate measure of G 

(governance, the proxy for likelihood of project success).  For the KKM governance 

indicators, Table 12 reports correlations for four relevant measures:  Regulatory Quality 

(already a determinant of climate vulnerability in this paper), Government Effectiveness, 

Rule of Law and Control of Corruption.  The correlation coefficients are calculated from 

nearly 2000 observations for 209 countries during the period 1996-2008.  The 

correlations are all very high, and highly significant, so any of the variables is a 

reasonable governance proxy in this context.  For simplicity and convenience, I opt for 

Regulatory Quality. 

 

Table 12:  Correlations of KKM Governance Measures, 209 countries, 1995-2008 

 

 

  

 

 

 

I also explicitly incorporate a unit project cost index based on differential wages, 

using income per capita as a proxy and an exponential weight (0.6) that reflects the 

findings of Harrison (2002) on the labor share of income in low- and middle-income 

countries.
39

  

For climate vulnerability, then, the full formula for country scoring is given by 

 

(8) S = [Climate Change Vulnerability]
β1 

[Governance]
β2 

[Population]
β3 

[Cost Index]
β4

 

= [D
 
Y

α2
 G

α3
]

β1 
G

β2 
P

β3 
Y

β4
 

It is expositionally useful to separate this score into three components: 

Per-capita vulnerability: [D
 
Y

α2
 G

α3
]

β1
 

Project concerns:  G
β2 

Y
β4

 

Population scaling: P
β3

 

 

                                                 
39

  Formally, this index assumes a Cobb-Douglas (unit-elastic) cost function, internationally-traded capital 

and non-traded labor.  The cost elasticity of the average wage (proxied by income per capita) in this 

function is the labor share of national income. 

 Regulatory 

Quality 

Government 

Effectiveness 

Rule of 

Law 

Government Effectiveness 0.923   

Rule of Law 0.885 0.934  

Control of Corruption 0.874 0.941 0.943 
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Per-capita vulnerability already incorporates exponential weighting, so I set β1 =1.0. I 

use estimated vulnerability weights from column (6), Table 1: α2 = -0.78 ; α3 = -1.64. For 

the governance parameter (β2), I adopt the IDA’s 2007 weighting scheme that sets an 

effective value of 3.0.
40

  I follow IDA and the AfDB in setting the population weight β3 at 

1.0 and, as previously noted, I set the cost index β4 at 0.6. 

Re-arranging terms in the scoring equation, the full formula is
41

  

 

(9) 32342 
PGDYS


  

 

In some cases, donor institutions may want to allocate adaptation assistance by 

vulnerability alone, without incorporating the project concerns of organizations like the 

MDBs.  In other cases, they may want to ignore both resilience factors and project 

concerns, focusing exclusively on climate drivers.  Accordingly, I develop allocation 

formulas for climate drivers only (α2 = 0; α3 = 0, β2 = 0, β4 = 0), addition of vulnerability 

factors (β2 = 0, β4 = 0); and addition of  project concerns (all parameters non-zero).    

 

Climate Drivers:   (10a) SC = D P 

Vulnerability:       (10b) SV = D Y
-0.78

 G
-1.64

 P 

Project concerns:  (10c) SP =  D Y
-0.18

 G
1.36

 P 

 

Interpretation of these formulas is case-specific.  For composite allocation exercises, 

D is the group-weighted sum in (7) and P is national population (PT).  For exercises that 

focus on one problem, D is the appropriate indicator (W, R, A) and P is the directly-

affected population group (PT, PR, PA).  

These three formulas have very different policy implications.  In the first case (10a), 

resilience factors make no difference:  Equal shares will go to two countries with the 

same climate drivers, even if one is much more resilient because it is significantly richer 

and/or better governed.  In the second case (10b), differences in income and governance 

                                                 
40

  In the IDA formula, the exponent of the overall governance measure (G) is 2.  But G itself is the product 

of two interior measures: A weighted combination of World Bank CPIA and other performance 

indicators, and a separate governance indicator raised to the power 1.5.  Combining these factors, I set 

the equivalent exponent for my single governance measure (KKM Regulatory Quality) at 3.0 (1.5 x 2.0). 

More recently, IDA has revised its weighting formulation to promote ease of interpretation by the 

Bank’s client countries (IDA, 2007). 
41

  The formulation in (9) uses additive parameters α3 and β2 to incorporate the effects of governance on 

climate vulnerability and project implementation capability.  With this specification, I take a direct, 

empirically-based approach to incorporating the countervailing effects of governance.  In contrast, IDA 

uses a two-stage approach.  In the first stage, it ensures minimum commitments to countries 

regardless of their governance status.  Then it distributes the remaining funds using its allocation 

formula.    
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may alter the climate-driver allocation significantly.  Introduction of project concerns 

(10c) will reduce the high negative weight on income to a very moderate value, and 

switch the governance effect from strongly negative to strongly positive.  By implication, 

relatively poor, ineffectively-governed countries will get significantly lower allocation 

scores (and allocations) from (10c) than (10b). 

 

3.2  The Supporting Database 

 

Formulas 10a, 10b and 10c yield country scores whose relative values are also the 

countries’ relative funding shares when they qualify for assistance from a donor fund.   

The accompanying Excel spreadsheet for 233 states includes all the data necessary for 

applying the three formulas to each of the three adaptation problems (extreme weather 

change, sea level rise, agricultural productivity change) separately, and to the composite 

case.  For practitioners’ convenience, I have also computed indicated country shares for 

individual problems and the composite case.  In the database, all entries are global shares, 

as if all 233 countries are candidates for allocation.  Computation of shares for any subset 

of countries requires only one additional step:  Calculate the total of shares in the subset 

of countries and divide each share by that total.  The results are the appropriate shares for 

countries within the subset.  

In the following section, I present illustrative applications for two contrasting cases:  

assistance for adaptation to sea level rise by the 20 developing states that are small 

islands, and assistance for general adaptation to climate change by the 68 states that 

qualify for low-income status. 

 

4.  Illustrations of the Methodology 

 

4.1 Developing Small Island States 

 

From the 64 small islands in the database (those with areas less than 20,000 sq. km.), I 

select the 20 states that qualify for IDA lending or have low or lower-middle income 

status.  For this illustration, I assume that a donor institution is only interested in 

assistance for adaptation to sea level rise.  The critical indicator is the forecast change in 

storm surge risk during the period 2008-2050.  My measure of risk is the probability of 

residence in the coastal area that is threatened by storm surges. 

The first four columns of Table 13 provide information on geography, area and 

population.  The 20 island states are scattered across the oceans, with 3 in the Atlantic 

(Cape Verde, St. Helena, Sao Tome and Principe); 5 in the Caribbean (St. Vincent and 

the Grenadines, Dominica, Montserrat, Grenada, St. Lucia); 2 in the Indian (Maldives, 

Comoros) and 10 in the Pacific (Tuvalu, Marshall Islands, Wallis and Futuna, Kiribati, 

Nauru, Tonga, Tokelau, Samoa, Vanuatu, and Federated States of Micronesia).  They 
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vary in size from 12,189 sq. km. (Vanuatu) to 12 sq. km. (Tokelau); in population from 

731,775 (Comoros) to 1,467 (Tokelau); and in income per capita from $4,349 (Wallis and 

Futuna) to $591 (Kiribati).  The islands’ diverse topographies and settlement patterns are 

reflected in 2008 probabilities of residence in coastal storm surge areas that range from 

22.3% in Tuvalu to 0.9% in St. Lucia.  Many probabilities are forecast to change 

substantially by 2050, as the sea level rises, average storm intensity increases, and 

population changes in the storm surge areas.  Table 13 presents the data in descending 

order of forecast change in probability.  Tuvalu has the most change (4%), while St. 

Lucia and the Federated States of Micronesia have the least (0.1%).  From the general 

database, I extract the 20 states’ pre-calculated global assistance shares for cases 10a 

(climate drivers), 10b (vulnerability) and 10c (project concerns).
42

  Then I apply the 

previously-described adjustment, totaling the pre-calculated global shares for the 20 

states and dividing each share by that total.  The results (which add to 100%) are the 

indicated assistance shares for the 20 small island states.  

Column (8) of Table 13 uses formula 10a to calculate indicated shares for the climate 

driver -- change in storm surge probability -- weighted by population.  Maldives has the 

greatest share (46.01%), which reflects both a high probability change (2.3%) and the 

largest threatened population in the group (49,250).  The relatively large shares of the 

Marshall Islands (11.03%) and Kiribati (7.93%) also reflect both factors, while relatively 

large threatened populations provide the main factor for Samoa (6.04%), Cape Verde 

(5.54%) and Comoros (6.30%).  Conversely, the smallest shares are indicated for 

countries that have small threatened populations and small forecast probability changes 

(Montserrat (0.005%), St. Lucia (0.07%), Federated States of Micronesia (0.04%).    

Column (9) uses formula 10b, which includes the effects of income and regulatory 

quality on resilience.  Indicated shares increase sharply for Kiribati (7.93% to 26.46%) 

and Comoros (6.30% to 17.25%), which have both the lowest incomes in the group ($591 

and $1,010, respectively) and the lowest regulatory quality scores (-1.22, -1.51).  

Conversely, Maldives’ share drops from 46.01% to 24.16% because its income is in the 

group 90
th

 percentile while its regulatory quality score (-0.42) is near the group median (-

0.46).  Smaller gains or losses by other islands also reflect their relative incomes and 

regulatory quality scores. 

Column (10) uses formula 10c, which adds two project concerns: probability of 

success (proxied by regulatory quality) and unit cost (proxied by income per capita).  As 

previously noted, these adjustments greatly moderate the negative overall weight on 

income and switch the weight on regulation quality from negative to positive.  The result 

is near-neutralization of the resilience factors, and indicated shares in column (10) that 

are very close to those in column (8), relative to column (9).  However, relative share 

decreases from (8) to (10) are still noticeable for island states with particularly low 

regulatory quality scores (Comoros (-1.51), Kiribati (-1.22), Tuvalu (-1.16), Nauru  

                                                 
42

  In the database, global shares are pre-calculated for all 233 countries. 
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Table 13: Results for Developing Small Island States 
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(-.91)), while relative increases are evident for high-scoring islands (St. Helena (1.44), 

Montserrat (0.58), St. Lucia (0.40), St. Vincent and the Grenadines (.40)). 

In summary, my results for 20 small island developing states highlight two allocation 

factors.  First, the islands’ heterogeneity produces large differences in indicated shares of 

an adaptation assistance fund, in both per capita and absolute terms.  Second, the 

indicated shares are highly sensitive to the incorporated decision factors.  Changing from 

a focus on climate drivers (formula 10a) to inclusion of resilience (10b) leads to sharply 

higher indicated shares for states with particularly low incomes and regulatory quality 

scores, and lower shares for states with the opposite characteristics.  Addition of project 

concerns (10c) returns the results to the neighborhood of the climate driver shares (10a), 

but with differences that are largely due to regulatory quality scores.    

 

4.2  Low Income States 

 

To illustrate the generality of my approach, I switch from one problem dimension 

(sea level rise)  to three (extreme weather change, sea level rise, agricultural productivity 

loss), and from the microcosm of small island developing states to the macrocosm of all 

low income states (those qualified for IDA lending, or with 2008 per capita incomes 

below $2,500 at purchasing power parity).  From the general database for 233 countries, I 

extract the overall climate change risk index; risk indicators for extreme weather change, 

sea level rise, and loss of agricultural productivity; and indicated adaptation assistance 

shares for three overall cases:  climate drivers (formula 10a); vulnerability (10b); and 

project concerns (10c).   

As before, I recalculate shares for this country subset by totaling pre-calculated shares 

within the subset, and then dividing each pre-calculated share by that total.  Table 14 

(page 35) presents the results, with data ordered from the highest overall indicator of 

climate change risk.  Per equation (7), this is the weighted average of the indicators for 

extreme weather change, sea level rise and agricultural productivity loss.  The weights for 

the three indicators are proportional to total population, population threatened by coastal 

storm surges, and rural population, respectively.  The three problem indicators are 

derived from the underlying measures of climate impact (respectively change in the 

probability of being affected by extreme weather; change in the probability of residence 

in a storm surge zone; percent change in agricultural productivity).  I transform them to 

indicators with maximum values of 100 to establish parity for aggregation and facilitate 

comparisons.  These scalar transformations have no effect on indicated aid shares.   

Since the threat indicators are per-capita measures, it is not surprising to see great 

variation over the range of country sizes.  Djibouti and Guyana have much higher sea 

level rise indicators than Bangladesh, and Congo Republic and Haiti have higher  

agricultural vulnerability indicators than Vietnam or Ethiopia.  Similarly, Honduras and 

Somalia have much higher extreme weather indicators than Nigeria. 
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Column (1) presents overall climate change risk indicators in descending order.  Sub-

Saharan Africa clearly dominates the top range, with significant representation from all 

African subregions.  In the top 25 states, 19 are from Sub-Saharan Africa, 4 from Asia 

(Bangladesh, Myanmar, Vietnam and Cambodia), and 2 from Latin America and the 

Caribbean (Guyana, Haiti).  Overall, the weighting tends to be dominated by agricultural 

productivity loss because its cross-country distribution is much less skewed than the 

distributions for sea level rise and extreme weather change (particularly the latter).  

Examples are provided by the top two countries, Central African Republic and Burundi, 

which have maximum global indicator values (100) for agricultural productivity loss but 

no coastal threat (they are landlocked) and very small extreme weather indicators.  

However, many countries in the top 15 owe substantial parts of their rankings to threats 

from extreme weather change or sea level rise.  Examples include Bangladesh, Senegal, 

Ethiopia, Myanmar, Malawi, Guinea-Bissau, Vietnam, Madagascar, Guyana, Mauritania 

and Sierra Leone. 

Columns (5) – (7) present indicated aid shares for climate drivers only (formula 10a), 

vulnerability (10b, which adds the resilience factors), and inclusion of project concerns 

(10c).  Among the countries with high indicated aid shares, Vietnam and Ethiopia 

provide an instructive comparison.  Across threat indicators, the two countries are a study 

in contrasts:  Vietnam’s extreme weather change index (15.3) is over twice Ethiopia’s 

(6.0), while the opposite is true for agricultural productivity loss (Ethiopia 52.1, Vietnam 

25.1).  Vietnam has a very high indicator value for sea level rise (37.2), while Ethiopia 

has no SLR vulnerability because it is landlocked.  The two countries have similar total 

and rural populations, while Vietnam’s population in the storm surge area is about 10 

million.  The net results produce similar indicated shares for climate threat only (Ethiopia 

9.7%, Vietnam 7.8%).  These results are changed substantially by addition of the 

resilience factors – income per capita and regulatory quality (formula 10b).  Ethiopia’s 

per capita income ($600) is far lower than Vietnam’s ($2,349); Vietnam’s regulatory 

quality score (-0.53) is around the 70
th

 percentile for the group, while Ethiopia’s score (-

.86) is well below the median.  Incorporation of these resilience factors raises Ethiopia’s 

indicated share to 11.4%, while reducing Vietnam’s to 2.6%.  As in the case of small 

island states, inclusion of project concerns (formula 10c) largely reverses the resilience 

adjustment, but with a modest relative shift to Vietnam because of its higher regulatory 

score.     

In summary, the pattern of results for all poor countries resembles the pattern for 

developing small island states:  Per-capita shares assigned for climate drivers alone (10a) 

change markedly with the addition of vulnerability factors (10b), and then shift back 

substantially with the inclusion of project concerns (10c).  As before, cross-country 

differences in affected populations have large impacts on indicated aid shares.  However, 

this case is differentiated from the small island illustration by its inclusion of all three 

climate problems.  Relative weightings and results are strongly affected by differences in 
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the relative sizes of the three affected population groups (total population for extreme 

weather change; population in storm surge areas for sea level rise; rural population for 

agricultural productivity loss).  Although all three climate change risk indicators play 

significant roles, the indicator for agricultural productivity loss tends to dominate many 

overall indicator values because its cross-country distribution is much less skewed than 

the distributions for sea level rise and extreme weather change (particularly the latter). 

 

5.  Summary and Conclusions 

 

In this paper, I have constructed, tested and applied indicators that incorporate   factors 

related to climate change risk, vulnerability to climate change, and aid project economics.  

I have taken the broadest feasible view of climate change risk by including indicators for 

extreme weather, sea level rise and agricultural productivity loss.  Similarly, I have taken 

the most inclusive possible approach to country representation.  My database, included 

with this paper in an Excel spreadsheet, provides a complete set of indicators for 233 

states that range in size from China to Tokelau, and in per capita income from Monaco to 

the Democratic Republic of the Congo.   

In large part, this exercise has been driven by an immediate, practical objective:  

comprehensive information for donor institutions – MDBs, bilateral aid agencies, NGO’s 

– that seek to provide financial assistance for adaptation to climate change.  The paper 

develops and illustrates methods for cross-country allocation that incorporate climate 

drivers, resilience factors, and concerns related to project economics.  The methods can 

be applied easily and consistently to any subset of the 233 states.  To facilitate 

applications, the database includes relevant identifiers for each country:  area, population, 

income per capita, island status, small island status, coastal status, region, subregion, 

World Bank region, World Bank lending class and income class.  I have also included 

standard ISO3 codes for linking to other databases. 

At first glance, my inclusion of 233 states might seem excessive.  The richest states 

are in the database alongside the poorest; the tiniest island states alongside the mainland 

giants, and current ―rogue states‖ (however and by whomever defined) alongside the 

states currently favored by the major multilaterals and bilaterals.  My reasons for this all-

inclusive approach are straightforward and, I hope, persuasive:  First, all states are 

affected by climate change, and it makes sense to provide a comprehensive view of the 

risks they all face.  I hope that an inclusive approach will encourage citizens of all 

countries to consider their stakes in this global problem.  Second, all states may well be 

candidates for assistance in the uncertain, undoubtedly-turbulent world that awaits if we 

continue to dither on controlling carbon emissions.  Finally, I hope that the information in 

this paper will promote recognition that conventional divisions (North/South, rich/poor, 

etc.) can impede understanding in this context.  We are all in this together, and my results 

indicate that dangerous climate change is already upon us.  



35 

 

Table 14: Result for Low-Income Countries 
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Table 4, continued 
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Table 4, continued 
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Appendix A:  Atmospheric CO2 Accumulation and Exposure to Extreme 

Precipitation  in the US, 1960–2010 

 

This appendix analyzes the relationship between atmospheric CO2 accumulation and 

exposure of the US population to extreme precipitation.  I divide the overall exposure 

change since 1960 into two components:  heavier precipitation driven by CO2 

accumulation (via radiative forcing), and population shifts toward wetter areas.  My 

analysis draws on a long-term database maintained by the US National Oceanic and 

Atmospheric Administration (NOAA) for 344 geographic divisions in the continental 

United States.  For the period January, 1970 to July, 2010, I analyze changes in the 

Palmer Hydrological Drought Index (PHDI), which indicates the severity of wet or dry 

periods in each NOAA division.  I also weight divisional PHDI series by population to 

compute changes in the percent of Americans exposed to extreme precipitation.  

For NOAA geographic divisions and the US population, Figures A1 and A2 present 

trend indicators of exposure to extreme precipitation (PHDI>=4).
43

  The indicators in 

Figure A1 assign the following weights to divisional observations: 1 if PHDI>=4, 0 

otherwise.  In Figure A2, the assignment rule is (PHDI/4 if PHDI>=4, 0 otherwise).  A1 

and A2 would be identical if there were no trend in PHDI values.  Inspection of A1 and 

A2 yields three conclusions.  First, all exposure indicators trend sharply upward.  Second, 

the slopes in A2 are steeper, indicating a trend increase in the value of PHDI measures 

above 4.  Finally, some intertemporal divergence in trends for NOAA divisions and the 

US population suggests that heavier precipitation and geographic shifts have both played 

a role. 

 

Figure A1: Extreme precipitation exposure, 1970–2010 (Unwgted) 
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  The trend lines are 10-year moving averages. 



40 

 

Figure A2: Extreme precipitation exposure, 1970–2010 (Wgted) 
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Table A1 presents elasticity calculations for the indicators in A1 and A2.  They all 

exhibit large percent changes from 1970 to 2010:  The PHDI weighted and unweighted 

indicators for NOAA divisions increase by 362% and 331%, respectively, while the 

corresponding indicators for the US population increase by 597% and 561%.  When these 

are divided by the relatively modest increase in atmospheric CO2 concentration (19.5%), 

they yield very high elasticities: 18.6 and 17 for NOAA divisions; 30.6 and 28.8 for the 

US population.  Comparison of the population exposure elasticities in Table A1 with the 

population impact elasticities in the paper’s Table 1 shows that they are nearly identical.  

While this single result is undoubtedly fortuitous, it does suggest that the estimates in 

Table 1 have reasonable magnitudes.   

 

Table A1:  Exposure Elasticities 
 

 Exposure Indicator Values  

 NOAA Divisions US Population  

Weight 

(Figure) 

PHDI/4 

(A2) 

1 

(A1) 

PHDI/4 

(A2) 

1 

(A1) 
CO2 (ppm) 

1970 2.32 1.97 1.37 1.19 325.7 

2010 10.73 8.51 9.57 7.88 389.2 

 % Changes  

1970-2010 361.73 331.27 596.78 561.02 19.5 

 Elasticities  

1970-2010 18.56 17.00 30.62 28.79  

 

The available data also permit decomposition of population exposure into two parts: 

the proportion due to change in extreme precipitation, holding each district’s national 
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population share constant, and the proportion due to change in each district’s population 

share, holding its incidence of extreme precipitation constant.  Mathematically: 
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where   Pwt  = The probability of exposure to extreme precipitation 

              rit  = The incidence of extreme precipitation in division i, period t 

              pit  = The national population share of division i, period t 

 

To apply equation (A2), I extract the subperiods 1960-75 and 1995-2010, and 

calculate the mean incidence of extreme wetness and mean population share in each 

subperiod.  I calculate (Δp/Δt) and (Δr/Δt) from differences in the respective period 

means.  For p and r, I use averages of the respective means for the two periods.  I sum the 

two terms of (A2) separately across 344 divisions and calculate each sum as a proportion 

of the total for both.  Table A2 presents results for the weighted and unweighted 

population exposure indicators.  In both cases, the conclusion is clear:  Heavier 

precipitation accounts for about 98% of the increase in indicator values, and population 

shifts account for about 2%.          
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Table A2:  Contributions to Indicator Movement (%) 
 

 Exposure Indicator Values  

 NOAA Divisions US Population  

Weight 

(Figure) 

PHDI/4 

(A2) 

1 

(A1) 

PHDI/4 

(A2) 

1 

(A1) 
CO2 (ppm) 

1970 2.32 1.97 1.37 1.19 325.7 

2010 10.73 8.51 9.57 7.88 389.2 

 % Changes  

1970-2010 361.73 331.27 596.78 561.02 19.5 

 Elasticities  

1970-2010 18.56 17.00 30.62 28.79  

 

 

In this appendix, my analysis has been confined to one data-rich country and one 

measure of extreme weather.  My results indicate that population exposure incidence has 

been highly responsive to CO2 accumulation, and that almost all of the change has been 

due to heavier precipitation, not geographic shifts in the population.  Of course, I cannot 

generalize my results to 233 countries and five types of weather-related disasters.  

Nevertheless, the near-equivalence of elasticity estimates in Tables A1 and 1 is at least 

suggestive.  As I have noted in the paper, potential impacts are critically related to local 

adaptive settings:  A rapid change in the climate regime may lead to disproportionately-

heavy losses in settlements that are just outside the traditional boundaries of high-risk 

areas (near rivers, coastlines, arid zones, etc.). 
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Appendix B:  Formal development of the resource allocation rule 

 

Specify the donor’s objective function for reducing vulnerability as:  

(1) 



N

i
iRW

1
0  

where  Ri  =  Reduction of vulnerability to climate change in country i 

For each country, specify the vulnerability reduction function as: 

 

(2) ii pV
ii SR 1

0
     (α1 > 0) 

where Si =  Scale of donor activity in country i 

           Vi  =  Scale of vulnerability in country i 

  pi = Probability that a project will succeed in country i   

 

Equation (2) incorporates scale economies: The abatement productivity of donor 

activity rises with the scale of existing vulnerability.  In (2) this is explicitly specified as 

expected productivity, with the probability of project success as a conditioning factor.  

The donor faces a fixed budget constraint and potentially-different internal administrative 

costs across countries: 

(3) 



N

i

Tii IBc
1

 

where ci  = Unit cost of donor activity in country i 

      IT = Total sectoral budget   

Substitution from (2) into (1) yields the following welfare function: 

(4) 



N

i

pV
i

iiSW
1

00
1  

Assuming equal internal administrative costs across countries, maximization of W 

subject to the overall budget constraint yields the following ratio of optimal allocations to 

countries i and j: 

(5) 
jj

ii

j

i

pV

pV

S

S


*

*

 

Thus, allocations to countries i and j are proportional to their vulnerabilities if 

projects have equal success probabilities.  
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    Appendix C: Subregions and Countries 

 
Africa  Asia 

Subregion Country  Subregion Country 

Central Africa Angola  China China 

Central Africa Burundi  China Hong Kong SAR, China 

Central Africa Cameroon  China Macao SAR, China 

Central Africa Central African Republic  Middle East Bahrain 

Central Africa Congo, Dem. Rep.  Middle East Iraq 

Central Africa Congo, Rep.  Middle East Israel 

Central Africa Gabon  Middle East Jordan 

Central Africa Rwanda  Middle East Kuwait 

Central Africa Zambia  Middle East Lebanon 

East Africa Djibouti  Middle East Oman 

East Africa Eritrea  Middle East Qatar 

East Africa Ethiopia  Middle East Saudi Arabia 

East Africa Kenya  Middle East Syrian Arab Republic 

East Africa Malawi  Middle East Turkey 

East Africa Somalia  Middle East United Arab Emirates 

East Africa Sudan  Middle East West Bank and Gaza 

East Africa Tanzania  Middle East Yemen, Rep. 

East Africa Uganda  Northeast Asia Japan 

East Africa Madagascar  Northeast Asia Korea, Dem. Rep. 

North Africa Algeria  Northeast Asia Korea, Rep. 

North Africa Egypt, Arab Rep.  Northeast Asia Mongolia 

North Africa Libya  Northeast Asia Taiwan (China) 

North Africa Morocco  Southern Asia Bangladesh 

North Africa Tunisia  Southern Asia Bhutan 

Southern Africa Botswana  Southern Asia India 

Southern Africa Lesotho  Southern Asia Nepal 

Southern Africa Mozambique  Southern Asia Sri Lanka 

Southern Africa Namibia  Southeast Asia Brunei Darussalam 

Southern Africa South Africa  Southeast Asia Cambodia 

Southern Africa Swaziland  Southeast Asia Indonesia 

Southern Africa Zimbabwe  Southeast Asia Lao PDR 

Sahelian Africa Burkina Faso  Southeast Asia Malaysia 

Sahelian Africa Chad  Southeast Asia Myanmar 

Sahelian Africa Mali  Southeast Asia Papua New Guinea 

Sahelian Africa Mauritania  Southeast Asia Philippines 

Sahelian Africa Niger  Southeast Asia Singapore 

Coastal West Africa Benin  Southeast Asia Thailand 

Coastal West Africa Cote d'Ivoire  Southeast Asia Vietnam 

Coastal West Africa Equatorial Guinea  Western Asia Afghanistan 

Coastal West Africa Gambia, The  Western Asia Azerbaijan 

Coastal West Africa Ghana  Western Asia Iran, Islamic Rep. 

Coastal West Africa Guinea  Western Asia Kazakhstan 

Coastal West Africa Guinea-Bissau  Western Asia Kyrgyz Republic 

Coastal West Africa Liberia  Western Asia Pakistan 

Coastal West Africa Nigeria  Western Asia Tajikistan 

Coastal West Africa Senegal  Western Asia Turkmenistan 

Coastal West Africa Sierra Leone  Western Asia Uzbekistan 

Coastal West Africa Togo    
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Europe  Latin America and the Caribbean 

Eastern Europe Albania  Andean South America Bolivia 

Eastern Europe Armenia  Andean South America Colombia 

Eastern Europe Belarus  Andean South America Ecuador 

Eastern Europe Bosnia and Herzegovina  Andean South America Peru 

Eastern Europe Bulgaria  Central America Belize 

Eastern Europe Croatia  Central America Costa Rica 

Eastern Europe Czech Republic  Central America El Salvador 

Eastern Europe Estonia  Central America Guatemala 

Eastern Europe Georgia  Central America Honduras 

Eastern Europe Hungary  Central America Mexico 

Eastern Europe Latvia  Central America Nicaragua 

Eastern Europe Lithuania  Central America Panama 

Eastern Europe Macedonia, FYR  Caribbean Islands Anguilla 

Eastern Europe Moldova  Caribbean Islands Antigua and Barbuda 

Eastern Europe Poland  Caribbean Islands Aruba 

Eastern Europe Romania  Caribbean Islands Bahamas, The 

Eastern Europe Russian Federation  Caribbean Islands Barbados 

Eastern Europe Serbia and Montenegro  Caribbean Islands Bermuda 

Eastern Europe Slovak Republic  Caribbean Islands British Virgin Islands 

Eastern Europe Slovenia  Caribbean Islands Cayman Islands 

Eastern Europe Ukraine  Caribbean Islands Cuba 

Western Europe Andorra  Caribbean Islands Dominica 

Western Europe Austria  Caribbean Islands Dominican Republic 

Western Europe Belgium  Caribbean Islands Grenada 

Western Europe Cyprus  Caribbean Islands Guadeloupe 

Western Europe Denmark  Caribbean Islands Haiti 

Western Europe Finland  Caribbean Islands Jamaica 

Western Europe France  Caribbean Islands Martinique 

Western Europe Germany  Caribbean Islands Montserrat 

Western Europe Gibraltar  Caribbean Islands Netherlands Antilles 

Western Europe Greece  Caribbean Islands Puerto Rico 

Western Europe Guernsey  Caribbean Islands Saint Barthelemy 

Western Europe Ireland  Caribbean Islands Saint Martin 

Western Europe Italy  Caribbean Islands St. Kitts and Nevis 

Western Europe Jersey  Caribbean Islands St. Lucia 

Western Europe Liechtenstein  Caribbean Islands St. Vincent and the Grenadines 

Western Europe Luxembourg  Caribbean Islands Trinidad and Tobago 

Western Europe Malta  Caribbean Islands Turks and Caicos Islands 

Western Europe Monaco  Caribbean Islands Virgin Islands (U.S.) 

Western Europe Netherlands  Northern South America Brazil 

Western Europe Norway  Northern South America French Guians 

Western Europe Portugal  Northern South America Guyana 

Western Europe San Marino  Northern South America Suriname 

Western Europe Spain  Northern South America Venezuela, RB 

Western Europe Sweden  Southern South America Argentina 

Western Europe Switzerland  Southern South America Chile 

Western Europe United Kingdom  Southern South America Paraguay 

   Southern South America Uruguay 
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North America  Oceania  

North America Canada  Atlantic Islands Cape Verde 

North America Saint Pierre and Miquelon  Atlantic Islands Faeroe Islands 

North America United States  Atlantic Islands Falkland Islands 

   Atlantic Islands Greenland 

   Atlantic Islands Iceland 

   Atlantic Islands Isle of Man 

   Atlantic Islands Saint Helena 

   Atlantic Islands Sao Tome and Principe 

   Atlantic Islands Svalbard and Jan Mayen 

   Indian Ocean Islands Comoros 

   Indian Ocean Islands Maldives 

   Indian Ocean Islands Mauritius 

   Indian Ocean Islands Mayotte 

   Indian Ocean Islands Reunion 

   Indian Ocean Islands Seychelles 

   Australia / New Zealand Australia 

   Australia / New Zealand New Zealand 

   Pacific Islands American Samoa 

   Pacific Islands Cook Islands 

   Pacific Islands Fiji 

   Pacific Islands French Polynesia 

   Pacific Islands Guam 

   Pacific Islands Kiribati 

   Pacific Islands Marshall Islands 

   Pacific Islands Micronesia, Fed. Sts. 

   Pacific Islands Nauru 

   Pacific Islands New Caledonia 

   Pacific Islands Niue 

   Pacific Islands Norfolk Island 

   Pacific Islands Northern Mariana Islands 

   Pacific Islands Palau 

   Pacific Islands Pitcairn 

   Pacific Islands Samoa 

   Pacific Islands Solomon Islands 

   Pacific Islands Timor-Leste 

   Pacific Islands Tokelau 

   Pacific Islands Tonga 

   Pacific Islands Tuvalu 

   Pacific Islands Vanuatu 

   Pacific Islands Wallis and Futuna 
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