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Abstract Questions of cooperation, peace and success within a society have been frequently modelled
by iterated (2 × 2)-bimatrix-games and sets of strategies for such games. In most of the research up
to now computer simulations have been used to understand what would happen in somehow idealized
societies. This paper introduces an approach relying solely on analytic methods. It is based on the
assumption, that the strategies are chosen according to some distribution function. As a first instance
of a case, where an explicit solution can be obtained, the case of uniform distribution will be studied.

Consider a society, where there is no a priori preference for any particular strategy. What sort of
behavior will be successful in such a society? Will there be a ’natural ruler’ for such a society and will
this person be trustworthy? Will the well-known candidates for good strategies, such as TIT FOR
TAT, show a tendency to cooperation, when they are used against many different opponents? The
following main results will be obtained: Assuming uniform distribution there is a strategy, which is
in the integral-mean best among all memory-one-strategies. This strategy is – against it’s myth – not
TIT FOR TAT, because PAVLOV does better. The payoff of TIT FOR TAT in the integral-mean is
calculated explicitly

Thomas Hobbes’ ’state of nature’ has been the starting point for many consider-
ations concerning social order and legitimation of sovereignity. Philosophers, sociol-
ogists, mathematicians and economists have asked whether it is possible, that social
order emerges without any external force, only as a result of the rational preferences
and deliberations of individuals. We are hence confronted with two questions: What
sort of behavior does a rational person choose? Are rational persons able to live in
peace with each other? At first sight these questions might seem independent, but
it is clear, if we assume that physical and mental abilities are distributed fair among
all the individuals1, then there is complete symmetry among these persons and there-
fore one’s optimal strategy will be everybody’s optimal strategy. Then it is of course
easily predictable, if such a society will attain a state of cooperation and peace. But

1Hobbes is one the first who makes this premise, when he writes in Leviathan ([7], p.183): Nature
hath made men so equal, in the faculties of body, and mind.
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unfortunately there is no ’optimal’ behavior in a sense, that supposes itself. Axelrod
proved this for one specification of ’optimal’, and this paper contains a proof for an-
other specification. So what we are left with, is: The rational person/behaviour does
not exist.

Therefore we have to try a different attempt: If there is no optimal strategy, it
is natural to think of every individual just choosing any strategy. Let us assume
the strategies to be distributed uniformly, so that the society could be called totally
pluralistic with respect to the choice of strategies. What strategy is then best against
these strategies in the mean? In other words: What properties does a natural ruler, a
person qualified by her/his success, have2?

In the following I will discuss two strategies and ask whether they are successful
and whether they are cooperative strategies.

0 Game-theoretic modelling and the existence of

optimal strategies

In a world that doesn’t consist of angels only, as Axelrod [1] remarked, it is of interest
to know, under what conditions individuals will cooperate, when they are supposed to
be set in a state of nature without any executed law.

Game theorists have modelled the decision making process in the state of nature
by the so called Prisoner’s Dilemma, more generally by (2× 2)-bimatrix-games. These
models have become common knowledge to all persons dealing with problems of (social)
cooperation or social order.

For the purpose of building a game-theoretic model for the state of nature let us
assume two players S1 and S2 who may choose (independently of each other) between
two alternatives C and D. After having decided they gain their payoff according to
the following matrix

S2
S1
@

@
C D

C

D

(
R/R S/T
T/S P/P

)

It is plausible to assume T > S, T > P and R > S+T
2

. If T > R > S > P the game
is called Prisoner’s Dilemma.

In the case of the Prisoner’s Dilemma it is clear how a rational person has to behave:
he has to defect. Many writers (e.g. [13]) have pointed out the dynamical character of
social life. People meet each other again and again, and so they change their behaviour
according to their expectations for the reactions of others. The fact that they usually
don’t know, when they will meet someone the last time, finds its mathematical analogue
in the assumption of an infinite sequence of meetings. The payoffs, a player gains in

2Hobbes excludes the existence of a person, who is distinguished by nature in such a way, that he
might be king by his own force.
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such an iterated game, can be evaluated by considering an expression of the form

D := lim
N→∞

N∑
n=1

wn An,

where An means the payoff a player gets in the n-th game, and wn is a weight. In the
literature one can find wn = 1

N
and wn = gn for g ∈]0, 1[ as such weights. We define

D̄ := lim
N→∞

1
N

N∑
n=1

An and Dg :=
∞∑
n=1

gn−1 An,

(g makes events in the far future less important).
A strategy of a player consists in the probability of C in the first game and a

function which assigns a probability to C in the (n + 1)-th game depending on the
outcomes of the first n games.

One could now try to find a satisfying answer to the question, whether people are
able to receive social cooperation on their own, in the following way:

First figure out, which strategy is best in the game that models the state-of-nature-
situations. This strategy would be best for all participants, therefore they would use it.
Then find out, whether two players using this strategy will be cooperating or defecting
on the long run.

Unfortunately this attempt of solving the problem fails in several ways. Axelrod
proved, that there is no best strategy in iterated Prisoner’s Dilemma games (PD-
games), where ‘best strategy’ means optimal strategy in the sense that an optimal
strategy S gets against every other strategy S ′ a total payoff Dg, which cannot be
improved by any other strategy playing against S ′. In the first section of this paper I
will prove, that there is no optimal strategy with respect to D̄ either.

The negative result of Axelrod has divided the successing research work into two
groups:

1.) rational behaviour is defined by estimation of expectations (e.g. [4], [5], [8])
2.) computersimulations decide whether one considers a strategy as a good strategy

(see [17]).
I will not refer to group one in my paper. In the computer tournaments performed by
Axelrod, the strategy TIT FOR TAT has been very effective. Since then TIT FOR
TAT has become omnipresent in the relevant philosophical literature.

Though TIT FOR TAT does have some remarkable advantages, for instance con-
cerning the question of collective stability ([1], [17]), the question how successful in
any suitable sense TIT FOR TAT really is, has not been studied yet. My paper is
concerned with the question of the quality of TIT FOR TAT and, more general with
alternative candidates for good strategies in (2 × 2)-matrix-games. Let me add some
definitions and notations before starting my considerations:

A memory-one-strategy is represented by the probability of C in the first game and
the vector (pR, pS, pT , pP ), where pi (i ∈ {R,S, T, P}) is the probability for C, supposed
the outcome in the preceeding game was i. This vector will be denoted the vector of
the probabilities of cooperation. Let qn(i) be the probability that a player gains i,
(i ∈ {R,S, T, P}) in the n-th game, then there is a (4× 4)-matrix U such that

(qn+1(R), qn+1(S), qn+1(T ), qn+1(P ))tr = U · (qn(R), qn(S), qn(T ), qn(P ))tr.

We call U the transition-matrix.

3



Further, we set DN := 1
N

∑N
n=1An. For a given memory-one-strategy M, which

against a strategy with p as vector of the probabilities of cooperation gains the average
payoff D̄(p), we calculate the integral-mean D̃ of the average payoffs by

D̃ =
∫

[0,1]4

D̄(p) dp.

We will draw attention to the following strategies

TIT FOR TAT ...................... (1, 0, 1, 0), C as first move
PAVLOV ...................... (1, 0, 0, 1)

As already announced the following statement holds:

Prop. 0.1 In iterated PD-games there is no optimal strategy S in the sense, that S
gains against every strategy S ′ an average payoff D̄, which cannot be improved by any
other strategy playing against S ′.

To see this you only have to consider the strategy one could call ETERNAL PREJU-
DICE and its negation. ETERNAL PREJUDICE is the strategy, that takes over the
behavior of the opponent in the first move for all the following games (the first move of
ETERNAL PREJUDICE is irrelevant here). When playing against ETERNAL PREJ-
UDICE one has to cooperate in the first move to achieve an optimal payoff. When
playing against its negation one has to defect. Therefore ETERNAL PREJUDICE and
its negation have different optimal opponents.

1 TIT FOR TAT

Is TIT FOR TAT a successful strategy?

As said in the previous paragraph there is no optimal strategy in the sense of universally
optimizing D̃. But because of continuity considerations, there must be a strategy, which
maximizes D̃ in the integral-mean under all memory-one-strategies, assuming uniform
distribution. This strategy will turn out not to be TIT FOR TAT. So TIT FOR TAT
is not a best strategy in the weaker sense either.

Theorem 1.1 There is a strategy that is best in the integral-mean among all memory-
one-strategies; this strategy is not TIT FOR TAT.

At least in one sense TIT FOR TAT is not a bad strategy: Except very rare examples
opponents of TIT FOR TAT don’t gain more than TIT FOR TAT (but they don’t gain
less either). So if a player isn’t interested in what he gains, but in his opponent’s not
gaining more than himself, that means, he is interested in not being the loser of the
game, TIT FOR TAT is a good choice. For seeing this we need the following lemma,
which can be found in the literature (see, e.g. [18]) and is a simple consequence of the
lemma formulated in the Appendix.
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Lemma 1.2 Let D̄ be the average payoff (in the sense of the preceding section), which
TIT FOR TAT gains against a memory-one-strategy. Then for almost all memory-
one-strategies M it holds

D̄ = lim
N→∞

DN = n(pR, pS, pT , pP ) · (R · pS

1− pR

+ S + T + P · 1− pT

pP

)

with

n(pP , pS, pT , pP ) =
pP (1− pR)

pPpS + 2pP (1− pR) + (1− pT )(1− pR)

When TIT FOR TAT gets in a game the payoff R · qR +S · qS + T · qT +P · qP then M
gets R · qR + T · qS + S · qT + PqP . But from Prop. 1.2 follows that q̃S = q̃T ; this yields,

Prop. 1.3 For almost all memory-one-stragies M it holds: When playing against each
other TIT FOR TAT and M gain the same (in the mean).

It is possible to say explicitly how much TIT FOR TAT gains in the integral-mean
against all memory-one-strategies:

Theorem 1.4. TIT FOR TAT gains in the integral-mean over all memory-one-
strategies the payoff

D̃ = R · q̃R + S · q̃S + T · q̃T + P · q̃P

where

q̃S = q̃T = 7
2
log 2− 9

4
log 3 + 1

96
(12 + π2 + 6 log2 2 + 24 log 2 log 3+

+ 12Li2(−1
2
)− 6Li2(−1

8
)) = 0.21875101...,

q̃R = q̃P = (1− 2q̃S)/2 = 0.28124899...,

and Li2(.) is the dilogarithm, i.e. Li2(z) =
∫ 0
z

log(1−t)
t

dt or as a series expansion

Li2(z) =
∑∞
k=1

zk

k2 .

Is TIT FOR TAT a cooperative strategy?

Let us say ‘Two strategies tend to mutual cooperation almost surely’ if and only if
q̃R = limn→∞ qn(R) = 1 and ‘Two strategies tend rather to mutual cooperation than
to a different outcome’ if and only if q̃R = limn→∞ qn(R) > 1

2
.

Theorem 1.5 TIT FOR TAT tends

• only with a nullset of memory-one-strategies almost surely to mutual cooperation.

• with only 9, 51 percent of the memory-one-strategies rather to mutual cooperation
than to a different outcome.

• with all memory-one-strategies in the integral mean rather not to mutual cooper-
ation (the probability is only 21, 88 percent).
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As TIT FOR TAT was successful in the computer tournaments performed by Ax-
elrod one can easily have the idea to find a good strategy by improving TIT FOR TAT
in some way. There have been several attempts to do so, one result was GENEROUS
TIT FOR TAT or TIT FOR a TAT, which is not punishing every defection, but only
every 1

1−a -th one. As it turns out, this produces strategies, which of course are (by con-
struction) more cooperative, but unfortunately less successful. A theorem analogous
to Theorem 1.4 can be proved, the expressions to cope with become more complex,
but remain of the same sort.

2 PAVLOV

Considering TIT FOR a TAT did not touch TIT FOR TAT’s myth of being a good
strategy. Just being more peaceful and otherwise sticking to the same strategy doesn’t
pay. PAVLOV is a strategy that makes its choice for a move according to agreement
or disagreement in the previous game. It cooperates, if both players did the same in
the previous game, otherwise it defects. For the proof of the following lemma see my
remark concerning Lemma 1.2.

Lemma 2.1 Let D̄ be the average payoff, which PAVLOV gains against another strat-
egy. Then for almost all memory-one-strategies M with (pR, pS, pT , pP ) as the vector
of the probabilities of cooperation it holds

D̄ = lim
N→∞

DN = n(pR, pS, pT , pP ) · (R · pP

1− pR

+ S + T · pS

1− pT

+ P ).

with n(pR, pS, pT , pP ) =
(1− pT )(1− pR)

pP (1− pT ) + 2(1− pR)(1− pT ) + pS(1− pR)
.

From this we immediately see that PAVLOV wins against almost all strategies, for
which pS > 1−pT holds, that means PAVLOV wins against half of all strategies, namely
against those strategies, which prefer being exploited to exploiting. Against these
strategies PAVLOV does better than TIT FOR TAT. Hence one could say, PAVLOV
is not a ’friendly’ strategy, as it practises on the opponent’s weakness. Further and
more important it holds

Theorem 2.2 In the integral mean against all memory-one-strategies, PAVLOV gets
a higher payoff than TIT FOR TAT.

This can be easily seen by comparison of Lemma 1.2 and Lemma 2.1. Let us re-
mark, that TIT FOR TAT and PAVLOV play draw against each other (R,R,R, . . . if
PAVLOV cooperates in the first round; S, P, T, S, . . . if it defects).

3 Conclusion

Very large, pluralistic societies can be approximately modelled by a continuum of
uniformly distributed strategies. There is (at least) one most powerful (successful)
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member in such an idealized society. This person might be seen as a natural head of
the society. TIT FOR TAT has the reputation of being a good strategy, but it turns
out, that it is definitely not the best strategy (Theorem 1.1). PAVLOV might be a/the
best strategy, anyway it is more successful than TIT FOR TAT (Theorem 2.2). In spite
of the fact, that TIT FOR TAT is not quite cooperative (Theorem 1.5), the superiority
of PAVLOV is not a pleasing perspective, either. This becomes evident, if you compare
some other properties of TIT FOR TAT and PAVLOV: Having successfully exploited
the opponent PAVLOV tries it once again - unlike TIT FOR TAT. And also unlike
TIT FOR TAT PAVLOV rewards mutual defection by cooperation as its next move.

The rational society does not exist, because the rational individual does not exist.
The counterpart to the rational society, and perhaps the only remaining alternative is
the pluralistic society. In the pluralistic society there is no one, who is distinguished by
her/his rationality, but there is nevertheless someone, who is distinguished by her/his
success. Assuming that such a person will be influential, it is of great interest to know,
what this person will behave like. She/he will not choose TIT FOR TAT; it remains
an open question, whether she/he will choose PAVLOV. In my paper I assumed a
totally pluralistic society, i.e., I chose uniform distribution of strategies. For future
research it would certainly be a rewarding task to widen the range of distributions to
be considered.

Appendix

Proof of Theorem 1.4
According to Lemma 1.2 we have to calculate

D̃ = R · q̃R + S · q̃S + T · q̃T + P · q̃P

with

q̃R =

1∫
0

1∫
0

1∫
0

1∫
0

n(pR, pS, pT , pP ) · pS

1− pR

dpR dpS dpT dpP

q̃S = q̃T =

1∫
0

1∫
0

1∫
0

1∫
0

n(pR, pS, pT , pP ) dpR dpS dpT dpP ,

q̃P =

1∫
0

1∫
0

1∫
0

1∫
0

n(pR, pS, pT , pP ) · 1− pT

pP

dpR dpS dpT dpP

where n(pR, pS, pT , pP ) is defined as in Prop. 1.2.
Let us turn first to the integral

q̃S =

1∫
0

1∫
0

1∫
0

1∫
0

pP (1− pR)

pPpS + 2pP (1− pR) + (1− pT )(1− pR)
dpR dpS dpT dpP .

After substituting pT = r sinφ, 1− pR = r cosφ, 1− pT = s sinψ, pP = s cosψ one gets,
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q̃S =

π
2∫

0

π
2∫

0

s̄(ψ)∫
0

r̄(φ)∫
0

rs

2 + tanφ+ tanψ
dr ds dφ dψ,

with r̄(φ) =

{
1/cosφ for φ < π/4
1/sinφ for φ > π/4

and s̄(ψ) =

{
1/cosψ for ψ < π/4
1/sinψ for ψ > π/4

.

Further
q̃S = IS1 + IS2 + IS3 + IS4

with

IS1 = 1
4

π
4∫

0

π
4∫

0

1
cos2 φ

1
cos2 ψ

2 + tanφ+ tanψ
dφ dψ = 1

4

1∫
0

1∫
0

1

2 + x+ y
dx dy =

= 5
2
log 2− 3

2
log 3 = 0.08494951...

IS2 = 1
4

π
4∫

0

π
2∫

π
4

1
sin2 φ

1
cos2 ψ

2 + tanφ+ tanψ
dφ dψ = 1

4

1∫
0

1∫
0

1

2 + 1
x

+ y
dx dy

= 2
3
log 2− 3

8
log 3 = 0.05011851...

IS3 = IS2 because of symmetry arguments

IS4 = 1
4

π
2∫

π
4

π
2∫

π
4

1
sin2 φ

1
sin2 ψ

2 + tanφ+ tanψ
dφ dψ = 1

4

1∫
0

1∫
0

1

2 + 1
x

+ 1
y

dx dy

= 1
4

1∫
0

2− log(3− 1
y
) + 1

y

(2 + 1
y
)2

dy =

= 1
96

(12 + π2 + 6 log2 2− 32 log 2 + 24 log 2 log 3+

+ 12 Li2(−1
2
)− 6 Li2(−1

8
)) = 0.03356448....

As besides q̃S = q̃T it holds that q̃R = q̃P , one can calculate q̃R = q̃P = 1−2q̃S
2

.

Proof of Theorem 1.5
The first statement follows from Lemma 1.2.
From Theorem 1.4 the third statement can be taken directly: q̃R = 0.2187... .
To derive the second statement we have to determine the volume of that part of the

4-dimensional unite cube, which satisfies q̄R >
1
2
, that is pPpS > (1−pR)(2pP +(1−pT )).

Therefore we have to consider

1− V =
∫∫
B

∫∫
dpR dpS dpT dpP ,

where B is {(pR, pS, pT , pP ) ∈ [0, 1]4 : pS

1−pR
< 2 + 1−pT

pP
}.

After suitable substitutions we get

1− V = 3
4

1∫
0

1∫
0

dx dy + 1
4

∫
{(x,y)∈[0,1]2:
x>y/(2y+1)}

∫
dx dy = 7

8
+ 1

16
log 3 = 1− 0.09517992... .
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For the proof of Theorem 1.1, Lemma 1.2 and Lemma 2.1 one needs the following
lemma, which can be proved by some largescaled, but routine considerations from linear
algebra.

Lemma3: Let M be a memory-one-strategy. The average payoff, that M gains against
a memory-one-strategy M′, we call D̄ = D̄(M,M′).

Further, let U = U(M,M′) be the transition matrix, that is the (4 × 4)-matrix,
which fulfills qn = Uqn−1 (n ∈ IIN).

Then for almost all memory-one-strategies M′, that means all with the exception
of a 4-dimensional nullset, it holds

D̄ = lim
N→∞

DN = 〈e, a〉,

where a is the payoff-vector (R,S, T, P ) and e is the eigenvector, normed by ‖ · ‖1, to
the eigenvalue 1 of the matrix U .

Notice, that we are concerned with an only 4-dimensional nullset, which is important
for the following proof. In the literature the analogous lemma is stated for (4 + 4)-
dimensional nullsets of pairs of strategies.

Proof of Theorem 1.1
We have to prove that there is a strategy for which the integral mean D̃ attains its

maximum.
The function

D̃(p) :=
∫

[0,1]4

D̄(p, p′) dp′

with p = (p1, ..., p4d), p′ = (p′1, ..., p
′
4d)

is well-defined, as D̃ is continous except on a nullset. We will now proof that D̃(p) is
continous on the whole cube [0, 1]4

For p,p0 ∈ [0, 1]4 it holds

|D̃(p)− D̃(p0)| ≤
∫

[0,1]4

|D̄(p,p′)− D̄(p0,p
′)|dp′.

We want to show, that the integrand is arbitrarily small for sufficiently near points p
and p0, if p′ doesn’t lie in a certain nullset. For this purpose we assume to the contrary
that

lim
p→p0

D̄(p,p′) 6= D̄(p0,p
′)

would hold for a set of vectors p, which is not a nullset. (p0 is a constant not depending
on p′.) Then U(p0,p

′) would have a second Jordan-basis-vector with norm 1 to the
eigenvalue 1, which is a contradiction to the preceeding lemma.

3This lemma can be extended to memory-d-strategies, but the dimension of the nullset has to be
enlarged in a proper way.
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Therefore for an arbitrary ε we can choose δ in such a way that from |p− p0| < δ
for almost all p′ it follows

|D̄(p,p′)− D̄(p0,p
′)| < ε.

We get

|D̃(p)− D̃(p0)| ≤
∫

[0,1]4

ε dp′ = ε.

Hence D̄ is continuous and attains its maximum on the compact unit cube.
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