Foreign Affairs

Foreign Affairs

November/December 2004

 

Out of the Energy Box
By S. Julio Friedmann and Thomas Homer-Dixon

 

S. Julio Friedmann heads the Carbon Storage Initiative at Lawrence Livermore National Laboratory. Thomas Homer-Dixon is Director of the Pierre Elliott Trudeau Centre for Peace and Conflict Studies at the University of Toronto.

 

The Heat is On

Only Richard Nixon could go to China. And maybe only oil industry CEOs can lead action on global climate change. Lord Browne, the head of BP, has stated in no uncertain terms that climate change is real, and he has made it BP's responsibility to cut down on the greenhouse-gas emissions that are upsetting the earth's climate.

The prognosis for the future of climate change is indeed alarming. Scientists say plausible scenarios include terrible droughts, crop failures, and dying forests around the Mediterranean and in the United States, South America, India, China, and Africa. Sea levels are expected to rise significantly, drowning islands and possibly displacing hundreds of millions of people from coastlines, where more than a third of the world's population lives. Ground water supplies are set to shrink, reservoirs to dry up. Wildfires and violent storms will strike more often and much harder. And much of this change is expected within the next 50 years.

Most scientists believe that recent global warming is largely the result of human energy consumption, which releases carbon dioxide, a powerful greenhouse gas, into the atmosphere. Massive, almost inconceivable amounts of energy are used to do everything these days, from building airplanes to running sewer systems and hospital equipment. Energy is the essence of modern civilization, and as societies and economies grow, so does their energy consumption.

In the United States and most other developed countries, 85 percent of this energy comes from fossil fuels (mainly coal, oil, and natural gas). In developing countries, wood, charcoal, straw, and cow dung still meet a large portion of heating and cooking needs, but the shift to fossil fuels is happening fast. Global energy consumption is growing at roughly two percent per year and is projected to double by 2035 and triple by 2055.

The good news is that fossil fuels are still relatively abundant and cheap. Coal reserves are huge, especially in the United States. Oil and gas reserves are also significant, at least when one considers the world at large and includes unconventional reserves such as tar sands, oil shales, and coal-bed methane. The bad news is that burning fossil fuel emits carbon dioxide. And global energy consumption is so great and rising so fast that humans are demonstrably changing the climate.

Reducing the consumption of energy and increasing its efficient use would help control emissions. But such measures will not likely be sufficient to solve the problem. Nor will replacing fossil fuels with alternative sources of energy, which remain prohibitively expensive or too impractical to be used on a large scale. Modern economies are thus bound to remain dependent on carbon dioxide-releasing fuels for the foreseeable future.

Although energy needs and environmental constraints have created this tight energy box, an important technology has emerged that offers a way out of it, at least temporarily. Called "carbon sequestration," it is a way to store carbon dioxide in a benign form and in a safe place, allowing the continued use of fossil fuels without the dreadful effects of . . .