Foreign Affairs

Foreign Affairs

May/June 2002

 

Toward Biological Security
By Christopher F. Chyba

 

Christopher F. Chyba is Co-director of Stanford University's Center for International Security and Cooperation and holds the Carl Sagan Chair for the Study of Life in the Universe at the SETI Institute. He served on the staff of the National Security Council in the Clinton administration.

 

Misplaces Analogies

The anthrax attacks on the United States in the autumn of 2001, and the fear and confusion that followed, made clear that the country lacks a comprehensive strategy for biological security — the protection of people and agriculture against disease threats, whether from biological weapons or natural outbreaks. Too often, thinking about biological security has been distorted by misplaced analogies to nuclear or chemical weapons. An effective strategy must leave these analogies largely behind and address the special challenges posed by biological threats.

A strategy for biological security must confront drug-resistant and emerging diseases — more than 30 of which have entered the human population over the past quarter-century. There is no good analogue to this naturally occurring threat in the realm of nuclear or chemical weapons. Moreover, diseases may be targeted against livestock or crops as well as against human populations. And outbreaks of deadly, contagious, and long-incubating diseases such as smallpox have to be detected and stopped rapidly wherever in the world they occur. Fortunately, once formulated, a sound strategy for biological security will help sustain itself because many of its core provisions will benefit public health even apart from acts of bioterror.

In fact, many of the tools used to address natural disease threats will be needed to respond to an intentional attack. The U.S. response to the anthrax attacks has emphasized the importance of improving domestic defenses. These measures include stockpiling vaccines and antibiotics, as well as improving local and national disease surveillance and other public health tools. To be effective these domestic measures must be sustained for decades and keep pace with the biotechnology revolution. International steps — such as improving surveillance for and response to outbreaks of infectious diseases and securing pathogen stocks worldwide — are also crucial to an effective strategy. Yet most of these international measures have been ignored so far in the current focus on immediate domestic needs.

Part of the problem is the very vocabulary we use. Analysts and policymakers refer casually to "WMD" (weapons of mass destruction) or "NBCR" (nuclear/biological/chemical/radiological) weapons, as if the latter were merely variants on the same type of device. In fact, these weapons differ greatly in their ease of production, in the challenges they pose for deterrence, and in the effectiveness of defensive measures against them. The post-September 11 focus on WMD and whether they are in the hands of enemy states or groups risks overlooking these complexities. Put simply, biological weapons differ from nuclear or chemical weapons, and any biological security strategy should begin by paying attention to these differences.

The WMD Continuum

Imagine a line that begins with nuclear weapons at one extreme, continues through chemical, radiological, and biological weapons, and terminates with cyber-weapons (designed to attack computers or critical infrastructure) at the far end. As one moves along this continuum through the different so-called weapons of mass destruction (to which "cyber-weapons" have been added here for purposes of illustration), the difficulties facing nonproliferation become increasingly apparent. At the nuclear extreme, nonproliferation is comparatively robust, whereas . . .