Foreign Affairs

Foreign Affairs

July/August 2003

 

Space Diplomacy
By David Braunschvig, Richard L. Garwin, and Jeremy C. Marwell

 

David Braunschvig is a Managing Director at Lazard LLC and Adjunct Senior Fellow for Business and Foreign Policy at the Council on Foreign Relations. Richard L. Garwin is Philip D. Reed Senior Fellow for Science and Technology at the Council on Foreign Relations and the author, most recently, of Megawatts and Megatons: The Future of Nuclear Power and Nuclear Weapons. Jeremy C. Marwell is a Research Associate for Science and Technology at the Council on Foreign Relations.

 

A European Challenge In The Skies

Acrimonious transatlantic policy disputes have become all too familiar in recent years. This winter's UN Security Council debates over Iraq follow flashpoints on trade, the environment, and the International Criminal Court. Now satellite navigation has been added to the list.

Today, the Global Positioning System (GPS)—a satellite-based infrastructure developed by the U.S. Department of Defense—provides the only globally available signal for navigation, a feature that is essential to the operations of U.S. and allied military forces and to a growing number of civilian users. The European Union (EU) has decided to challenge GPS by building "Galileo," an independent European satellite constellation. Unsurprisingly, given the high stakes involved, the European proposal has sparked a serious transatlantic argument on several fronts, including the issue of potential interference between GPS and Galileo. The debate pits the effectiveness of a critical U.S. military asset against the EU's right to rely on a system independent of U.S. control. Any viable agreement must satisfy not only the negotiators on both sides of the Atlantic but also the global user community.

For 25 years, GPS satellites have crisscrossed the sky 12,000 miles above the earth's surface. Today, they emit two sets of signals that allow users to calculate their precise location anywhere in the world: an encrypted code for use by the U.S. military and selected allies and an open free signal for civilian use. Sometimes referred to as the world's "fifth utility"—on a par with water, gas, electricity, and communication—GPS enables the precise positioning, navigation, and timing information that is critical to modern society. Historically, innovations in navigation have led to groundbreaking advances in commerce, travel, and military strategy. Navigation and timing technologies are inherently dual-use, and GPS is no exception. The system's unprecedented accuracy, availability, and speed have made it indispensable to bankers, hikers, pilots, infantry, and generals alike.

The U.S. Department of Defense began launching GPS satellites in the late 1970s to improve navigation for military aircraft and ships, and to increase the delivery accuracy of the weapons they carried. After almost three decades of development and some $20 billion in procurement funding, U.S. and NATO aircraft, ships, vehicles, and ground troops rely on GPS. The system enables a host of crucial military applications, including, most notably, the current generation of "smart" bombs employed by the U.S. Air Force and Navy. Adoption of GPS-guided munitions in armed conflicts has been rapid, growing from just 3 percent of the bombs used in Serbia four years ago to an estimated 60 percent most recently in Iraq.

Even so, GPS's civilian and commercial value is quietly eclipsing its military applications. Worldwide, the ratio of civilian to military users stands at about 100 to 1, and by some estimates, commercial revenues from satellite navigation exceeded $12 billion in 2002, growing at more than 20 percent annually. GPS provides positioning and navigation information to recreational boaters and hikers, drivers of GPS-equipped cars, surveyors, and crews of commercial vessels, among others. . . .